
Applicability

This document applies to the part numbers of STM32F100xC, STM32F100xD and STM32F100xE high-density value line
devices and the device variants as stated in this page.
It gives a summary and a description of the device errata, with respect to the device datasheet and reference manual RM00041.
Deviation of the real device behavior from the intended device behavior is considered to be a device limitation. Deviation of the
description in the reference manual or the datasheet from the intended device behavior is considered to be a documentation
erratum. The term “errata” applies both to limitations and documentation errata.

Table 1. Device summary

Reference Part numbers

STM32F100xC(1) STM32F100RC, STM32F100VC, STM32F100ZC

STM32F100xD(1) STM32F100RD, STM32F100VD, STM32F100ZD

STM32F100xE(1) STM32F100RE, STM32F100VE, STM32F100ZE

1. This document applies only to devices that have internal code B in their sales type.

Table 2. Device variants

Reference
Silicon revision codes

Device marking(1) REV_ID(2)

STM32F100xC, STM32F100xD,
STM32F100xE A 0x1000

1. Refer to the device datasheet for how to identify this code on different types of package.
2. REV_ID[15:0] bitfield of DBGMCU_IDCODE register.

STM32F100xC, STM32F100xD and STM32F100xE high-density value line
device errata

 STM32F100xC
STM32F100xD STM32F100xE

Errata sheet

ES0136 - Rev 7 - August 2022
For further information contact your local STMicroelectronics sales office.

www.st.com

1 Summary of device errata

The following table gives a quick reference to the STM32F100xC, STM32F100xD and STM32F100xE high-
density value line device limitations and their status:
A = limitation present, workaround available
N = limitation present, no workaround available
P = limitation present, partial workaround available
“-” = limitation absent
Applicability of a workaround may depend on specific conditions of target application. Adoption of a workaround
may cause restrictions to target application. Workaround for a limitation is deemed partial if it only reduces the
rate of occurrence and/or consequences of the limitation, or if it is fully effective for only a subset of instances on
the device or in only a subset of operating modes, of the function concerned.

Table 3. Summary of device limitations

Function Section Limitation
Status

Rev. A

Core

2.1.1 Cortex-M3 LDRD with base in list may result in incorrect base register when
interrupted or faulted A

2.1.2 Cortex-M3 event register is not set by interrupts and debug A

2.1.3 Interrupted loads to SP can cause erroneous behavior A

2.1.4 SVC and BusFault/MemManage may occur out of order A

2.1.5 Arm Cortex-M3 BKPT in debug monitor mode can cause DFSR mismatch A

2.1.6 Arm Cortex-M3 may freeze for SLEEPONEXIT single instruction ISR A

System

2.2.1 Debugging Stop mode and SysTick timer A

2.2.2 Debugging Stop mode with WFE entry A

2.2.3 Wakeup sequence from Standby mode when using more than one wakeup
source A

2.2.4 LSE startup in harsh environments A

2.2.5 RDP protection N

2.2.6 Boundary scan TAP: wrong pattern sent out after the "capture IR” state A

2.2.7 Flash memory BSY bit delay versus STRT bit setting A

2.2.8 LSI clock stabilization time A

2.2.9 New IDD max values in case of Run mode, code executed from RAM, AHB
clock = 24 MHz, external clock, all peripherals disabled N

GPIO

2.3.1 SPI1 in slave mode and USART2 in synchronous mode N

2.3.2 SPI1 in master mode and USART2 in synchronous mode A

2.3.3 SPI2 in slave mode and USART3 in synchronous mode N

2.3.4 SPI2 in master mode and USART3 in synchronous mode A

2.3.5 I2C2 with SPI2 and USART3 A

2.3.6 I2C1 with SPI1 remapped and used in master mode A

2.3.7 I2C1 and TIM3_CH2 remapped A

2.3.8 USARTx_TX pin usage A

2.2.10 I2C1 with SPI3 used in master mode A

DMA 2.4.1 DMA disable failure and error flag omission upon simultaneous transfer error
and global flag clear A

FSMC 2.5.1 Dummy read cycles inserted when reading synchronous memories N

 STM32F100xC STM32F100xD STM32F100xE
Summary of device errata

ES0136 - Rev 7 page 2/28

Function Section Limitation
Status

Rev. A

ADC 2.6.1 Voltage glitch on ADC input 0 N

TIM

2.7.1 PWM re-enabled in automatic output enable mode despite of system break P

2.7.3 Consecutive compare event missed in specific conditions N

2.7.4 Output compare clear not working with external counter reset P

2.7.5 Missing capture flag A

2.7.6 Overcapture detected too early N

2.7.7 General-purpose timer regulation for 100% PWM N

IWDG

2.8.1 RVU flag not cleared at low APB clock frequency A

2.8.2 PVU flag not cleared at low APB clock frequency A

2.8.5 RVU and PVU flags are not cleared in Stop mode A

I2C

2.9.1 Some software events must be managed before the current byte is being
transferred A

2.9.2 Wrong data read into data register A

2.9.3 SMBus standard not fully supported A

2.9.4 Wrong behavior of I2C peripheral in master mode after a misplaced Stop A

2.9.5 Mismatch on the “Setup time for a repeated Start condition” timing parameter A

2.9.6 Data valid time (tVD;DAT) violated without the OVR flag being set A

2.9.7 I2C analog filter may provide wrong value, locking BUSY flag and preventing
master mode entry A

USART

2.10.1 Idle frame is not detected if receiver clock speed is deviated N

2.10.2 In full-duplex mode, the Parity Error (PE) flag can be cleared by writing the data
register A

2.10.3 Parity Error (PE) flag is not set when receiving in Mute mode using address
mark detection N

2.10.4 Break frame is transmitted regardless of nCTS input line status N

2.10.5 nRTS signal abnormally driven low after a protocol violation A

SPI/I2S

2.11.1 CRC still sensitive to communication clock when SPI is in slave mode even with
NSS high A

2.11.2
SPI CRC may be corrupted when a peripheral connected to the same DMA
channel of the SPI is under DMA transaction close to the end of transfer or end
of transfer -1

A

2.11.3 Wrong WS signal generation in 16-bit extended to 32-bit PCM long
synchronisation mode A

2.11.4 In I2S slave mode, WS level must be set by the external master when enabling
the I2S A

2.11.5 I2S slave mode desynchronisation with the master during communication A

The following table gives a quick reference to the documentation errata.

Table 4. Summary of device documentation errata

Function Section Documentation erratum

DMA 2.4.2 Byte and half-word accesses not supported

TIM 2.7.2 TRGO and TRGO2 trigger output failure

 STM32F100xC STM32F100xD STM32F100xE
Summary of device errata

ES0136 - Rev 7 page 3/28

2 Description of device errata

The following sections describe the errata of the applicable devices with Arm® core and provide workarounds if
available. They are grouped by device functions.

Note: Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

2.1 Core
Reference manual and errata notice for the Arm® Cortex®-M3 core revision r1p1-01rel0 is available from http://
infocenter.arm.com.

2.1.1 Cortex®-M3 LDRD with base in list may result in incorrect base register when interrupted or
faulted

Description

This limitation is registered under Arm® ID number 602117 and classified into “Category 2”.
The Cortex®-M3 core has a limitation when executing an LDRD instruction from the system-bus area, with the
base register in a list of the form LDRD Ra, Rb, [Ra, #imm]. The execution may not complete after loading the first
destination register due to an interrupt before the second loading completes or due to the second loading getting
a bus fault.

Workaround

1. This limitation does not impact the code execution when executing from the embedded flash memory, which
is the standard use of the microcontroller.

2. Use the latest compiler releases. As of today, they no longer generate this particular sequence. Moreover,
a scanning tool is provided to detect this sequence on previous releases (refer to your preferred compiler
provider).

2.1.2 Cortex®-M3 event register is not set by interrupts and debug

Description

This limitation is registered under Arm® ID number 563915 and classified into “Category 2”.
When interrupts related to a WFE occur before the WFE is executed, the event register used for WFE wakeup
events is not set and the event is missed. Therefore, when the WFE is executed, the core does not wake up from
WFE if no other event or interrupt occur

Workaround

Use external events instead of interrupts to wake up the core from WFE by configuring an external or internal
EXTI line in event mode.

2.1.3 Interrupted loads to SP can cause erroneous behavior

Description

This limitation is registered under Arm® ID number 752419 and classified into “Category 2”.
If an interrupt occurs during the data-phase of a single word load to the stack-pointer (SP/R13), erroneous
behavior can occur. In all cases, returning from the interrupt results in the load instruction being executed an
additional time. For all instructions performing an update to the base register, the base register is erroneously
updated on each execution, resulting in the stack-pointer being loaded from an incorrect memory location.
The affected instructions are:
1. LDR SP,[Rn],#imm
2. LDR SP,[Rn,#imm]!

 STM32F100xC STM32F100xD STM32F100xE
Description of device errata

ES0136 - Rev 7 page 4/28

http://infocenter.arm.com
http://infocenter.arm.com

3. LDR SP,[Rn,#imm]
4. LDR SP,[Rn]
5. LDR SP,[Rn,Rm]

Workaround

As of today, there is no compiler generating these particular instructions. This limitation can only occur with
hand-written assembly code.
Both issues may be worked around by replacing the direct load to the stack-pointer, with an intermediate load to a
general-purpose register followed by a move to the stack-pointer.
Example: the following instruction "LDR SP, [R0]" can be replaced by
“LDR R2,[R0]
MOV SP,R2 "

2.1.4 SVC and BusFault/MemManage may occur out of order

Description

This limitation is registered under Arm® ID number 740455 and classified into “Category 2”.
If an SVC exception is generated by executing the SVC instruction while the following instruction fetch is faulted,
then the MemManage or BusFault handler may be entered even though the faulted instruction which followed the
SVC should not have been executed.

Workaround

A workaround is only required if the SVC handler does not return to the return address that has been stacked for
the SVC exception and the instruction access after the SVC faults. If this is the case then padding can be inserted
between the SVC and the faulting area of code, for example, by inserting NOP instructions.

2.1.5 Arm® Cortex®-M3 BKPT in debug monitor mode can cause DFSR mismatch

Description

This limitation is registered under Arm® ID number 463763 and classified into “Category 3”.
A BKPT may be executed in debug monitor mode. This causes the debug monitor handler to be run. However,
the bit 1 in the Debug fault status register (DFSR) at address 0xE000 ED30 is not set to indicate that it was
originated by a BKPT instruction. This only occurs if an interrupt other than the debug monitor is already being
processed just before the BKPT is executed.

Workaround

If the DFSR register does not have any bit set when the debug monitor is entered, this means that we must be in
this “corner case” and so, that a BKPT instruction was executed in debug monitor mode.

2.1.6 Arm® Cortex®-M3 may freeze for SLEEPONEXIT single instruction ISR

Description

This limitation is registered under Arm® ID number 463764 and classified into “Category 3”.
If the Cortex®-M3 SLEEPONEXIT functionality is used and the concerned interrupt service routine (ISR) contains
only a single instruction, the core becomes frozen. This freezing may occur if only one interrupt is active and it is
preempted by an interrupt whose handler only contains a single instruction.
However, any new interrupt that causes a preemption would cause the core to become unfrozen and behave
correctly again.

Workaround

This scenario does not happen in real application systems since all enabled ISRs should at least contain one
instruction. Therefore, if an empty ISR is used, then insert an NOP or any other instruction before the exit
instruction (BX or BLX).

 STM32F100xC STM32F100xD STM32F100xE
Core

ES0136 - Rev 7 page 5/28

2.2 System

2.2.1 Debugging Stop mode and SysTick timer

Description

If the SysTick timer interrupt is enabled during the Stop mode debug (DBG_STOP bit set in the DBGMCU_CR
register), it wakes up the system from Stop mode.

Workaround

To debug the Stop mode, disable the system tick timer interrupt.

2.2.2 Debugging Stop mode with WFE entry

Description

When the Stop debug mode is enabled (DBG_STOP bit set in the DBGMCU_CR register) this allows software
debugging during Stop mode.
However, if the application software uses the WFE instruction to enter Stop mode, after wakeup some instructions
could be missed if the WFE is followed by sequential instructions. This affects only Stop debug mode with WFE
entry.

Workaround

To debug Stop mode with WFE entry, the WFE instruction must be inside a dedicated function with 1 instruction
(NOP) between the execution of the WFE and the Bx LR.

Example 1 :
__asm void _WFE(void) {
WFE
NOP
BX lr }

2.2.3 Wakeup sequence from Standby mode when using more than one wakeup source

Description

The various wakeup sources are logically OR-ed in front of the rising-edge detector which generates the wakeup
flag (WUF). The WUF flag needs to be cleared prior to the Standby mode entry, otherwise the MCU wakes up
immediately.
If one of the configured wakeup sources is kept high during the clearing of WUF flag (by setting the CWUF bit),
it may mask further wakeup events on the input of the edge detector. As a consequence, the MCU could not be
able to wake up from Standby mode.

Workaround

To avoid this problem, the following sequence should be applied before entering Standby mode:
1. Disable all used wakeup sources.
2. Clear all related wakeup flags.
3. Re-enable all used wakeup sources.
4. Enter Standby mode.
Be aware that, when applying this workaround, if one of the wakeup sources is still kept high, the MCU enters the
Standby mode, but then it wakes up immediately generating the power reset.

 STM32F100xC STM32F100xD STM32F100xE
System

ES0136 - Rev 7 page 6/28

2.2.4 LSE startup in harsh environments

Description

The LSE (low-speed external) oscillator system has been designed to minimize the overall power consumption
of the microcontroller. It is extremely important to take specific care in the design of the PCB to ensure this low
power oscillator starts in harsh conditions. In some PCB designs without coating, an induced low leakage may
prevent the LSE to startup, regardless of the 32.768 KHz crystal used. This phenomenon is amplified in humid
environments that create frost on the OSC32_IN/OSC32_OUT tracks. This unwanted behavior may happen only
at the first back-up domain power-on of the device.

Workaround

It is recommended to mount an additional parallel feedback resistor (from 16 MΩ to 22 MΩ) on board to help the
oscillation startup in all cases (see Figure 1). For more details on compatible crystals and hardware techniques on
PCB, refer to application note Oscillator design guide for STM8AF/AL/S, STM32 MCUs and MPUs (AN2867).

Figure 1. LSE startup using an additional resistor

MS32554V1

STM32F1

CL2

CL1

2.2.5 RDP protection

Description

When the RDP protection is set, the debugger can still access the CPU program counter register and the NVIC
registers as well. Remapping the table vector location at different address in the code memory map and triggering
the interrupts may allow to retrieve a part of the flash memory code in CPU registers.

Workaround

None.

2.2.6 Boundary scan TAP: wrong pattern sent out after the "capture IR” state

Description

After the “capture IR” state of the boundary scan TAP, the two least significant bits in the instruction register
should be loaded with 01 for them to be shifted out whenever a next instruction is shifted in. However, the
boundary scan TAP shifts out the latest value loaded into the instruction register, which could be 00, 01, 10 or 11.

Workaround

The data shifted out, after the capture IR state, in the boundary scan flow should therefore be ignored and the
software should check not only the two least significant bits (XXX01) but all register bits (XXXXX).

 STM32F100xC STM32F100xD STM32F100xE
System

ES0136 - Rev 7 page 7/28

2.2.7 Flash memory BSY bit delay versus STRT bit setting

Description

When the STRT bit in the flash memory control register is set (to launch an erase operation), the BSY bit in the
flash memory status register goes high one cycle later.
Therefore, if the FLASH_SR register is read immediately after the FLASH_CR register is written (STRT bit set),
the BSY bit is read as 0.

Workaround

Read the BSY bit at least one cycle after setting the STRT bit.

2.2.8 LSI clock stabilization time

Description

When the LSIRDY flag is set, the clock may still be out of the specified frequency range (fLSI parameter, see LSI
oscillator characteristics in the product datasheet).

Workaround

To have a fully stabilized clock in the specified range, a software temporization of 100 µs should be added.

2.2.9 New IDD max values in case of Run mode, code executed from RAM, AHB clock = 24 MHz,
external clock, all peripherals disabled

Description

In table Maximum current consumption in Run mode, code with data processing running from RAM of the device
datasheet, new IDD maximum values have been introduced at TA = 85 °C and 105 °C:

• At 85 °C, the new IDD value is 10.9 mA (the old value was 8.4 mA).
• At 105 °C, the new IDD value is 11.5 mA (the old value was 8.5 mA).

These new values are valid when the following conditions are all met:
• External clock
• AHB clock = 24 MHz
• All peripherals disabled

Workaround

None.

2.2.10 I2C1 with SPI3 used in master mode

Description

When the conditions below are met:
• I2C1 and SPI3 are clocked.
• I/O port pin PB5 is configured as an alternate function output.
There is a conflict between the SPI3_MOSI signal and the I2C1_SMBA signal (even if SMBA is not used).

Workaround

Do not use I2C1 together with SPI3 in master mode. When using SPI3 in master mode, the I2C1 clock must be
disabled.

 STM32F100xC STM32F100xD STM32F100xE
System

ES0136 - Rev 7 page 8/28

2.3 GPIO

2.3.1 SPI1 in slave mode and USART2 in synchronous mode

Description

When the following conditions are met:
• SPI1 and USART2 are clocked.
• I/O port pin PA4 is configured as an alternate function output.
USART2 cannot be used in synchronous mode (USART2_CK signal) if SPI1 is used in slave mode.

Workaround

None.

2.3.2 SPI1 in master mode and USART2 in synchronous mode

Description

When the following conditions are met:
• SPI1 and USART2 are clocked.
• I/O port pin PA4 is configured as an alternate function output.
USART2 cannot be used in synchronous mode (USART2_CK signal) if SPI1 is used in master mode and
SP1_NSS is configured in software mode. In this case USART2_CK is not output on the pin.

Workaround

In order to output USART2_CK, the SSOE bit in the SPI1_CR2 register must be set to configure the pin in output
mode.

2.3.3 SPI2 in slave mode and USART3 in synchronous mode

Description

When the following conditions are met:
• SPI2 and USART3 are clocked.
• I/O port pin PB12 is configured as an alternate function output.
USART3 cannot be used in synchronous mode (USART3_CK signal) if SPI2 is used in slave mode.

Workaround

None.

2.3.4 SPI2 in master mode and USART3 in synchronous mode

Description

When the following conditions are met:
• SPI2 and USART3 are clocked.
• I/O port pin PB12 is configured as an alternate function output.
USART3 cannot be used in synchronous mode (USART3_CK signal) if SPI2 is used in master mode and
SP2_NSS is configured in software mode. In this case USART3_CK is not output on the pin.

Workaround

In order to output USART3_CK, the SSOE bit in the SPI2_CR2 register must be set to configure the pin in output
mode,

 STM32F100xC STM32F100xD STM32F100xE
GPIO

ES0136 - Rev 7 page 9/28

2.3.5 I2C2 with SPI2 and USART3

Description

When the conditions below are met:
• I2C2 and SPI2 are clocked together or I2C2 and USART3 are clocked together.
• I/O port pin PB12 is configured as an alternate function output.
the following issues occur:
• Conflict between the I2C2 SMBA signal (even if this function is not used) and SPI2_NSS in output mode.
• Conflict between the I2C2 SMBA signal (even if this function is not used) and USART3_CK.
• In these cases the I/O port pin PB12 is set to 1 by default if the I/O alternate function output is selected and

I2C2 is clocked.

Workaround

I2C2 SMBA can be used as an output if SPI2 is configured in master mode with NSS in software mode.
I2C2 SMBA can be used in input mode if SPI2 is configured in master or slave mode with NSS managed by
software.
SPI2 cannot be used in any other configuration when I2C2 is being used.
USART3 must not be used in synchronous mode when I2C2 is being used.

2.3.6 I2C1 with SPI1 remapped and used in master mode

Description

When the following conditions are met:
• I2C1 and SPI1 are clocked.
• SPI1 is remapped.
• I/O port pin PB5 is configured as an alternate function output.
there is a conflict between the SPI1 MOSI and the I2C1 SMBA signals (even if SMBA is not used).

Workaround

Do not use SPI1 remapped in master mode and I2C1 together.
When using SPI1 remapped, the I2C1 clock must be disabled.

2.3.7 I2C1 and TIM3_CH2 remapped

Description

When the following conditions are met:
• I2C1 and TIM3 are clocked.
• I/O port pin PB5 is configured as an alternate function output.
there is a conflict between the TIM3_CH2 signal and the I2C1 SMBA signal (even if SMBA is not used).
In these cases the I/O port pin PB5 is set to 1 by default if the I/O alternate function output is selected and I2C1 is
clocked. TIM3_CH2 cannot be used in output mode.

Workaround

To avoid this conflict, TIM3_CH2 can only be used in input mode.

2.3.8 USARTx_TX pin usage

Description

In USART receive-mode-only communication (TE = 0 in the USARTx_CR1 register), even when the USARTx_TX
pin is not being used, the corresponding I/O port pin cannot be used to output another alternate function (in this
mode the USARTx_TX output is set to 1 and thus no other alternate function output can be used).

 STM32F100xC STM32F100xD STM32F100xE
GPIO

ES0136 - Rev 7 page 10/28

This limitation applies to all USARTx_TX pins that share another alternate function output.

Workaround

Do not use the corresponding I/O port of the USARTx_TX pin in alternate function output mode. Only the input
mode can be used (TE bit in the USARTx_CR1 has to be cleared).

2.4 DMA

2.4.1 DMA disable failure and error flag omission upon simultaneous transfer error and global flag
clear

Description

Upon a data transfer error in a DMA channel x, both the specific TEIFx and the global GIFx flags are raised and
the channel x is normally automatically disabled. However, if in the same clock cycle the software clears the GIFx
flag (by setting the CGIFx bit of the DMA_IFCR register), the automatic channel disable fails and the TEIFx flag is
not raised.
This issue does not occur with ST's HAL software that does not use and clear the GIFx flag when the channel is
active.

Workaround

Do not clear GIFx flags when the channel is active. Instead, use HTIFx, TCIFx, and TEIFx specific event flags and
their corresponding clear bits.

2.4.2 Byte and half-word accesses not supported

Description

Some reference manual revisions may wrongly state that the DMA registers are byte- and half-word-accessible.
Instead, the DMA registers must always be accessed through aligned 32-bit words. Byte or half-word write
accesses cause an erroneous behavior.
ST's low-level driver and HAL software only use aligned 32-bit accesses to the DMA registers.
This is a description inaccuracy issue rather than a product limitation.

Workaround

No application workaround is required.

2.5 FSMC

2.5.1 Dummy read cycles inserted when reading synchronous memories

Description

When performing a burst read access to a synchronous memory, some dummy read accesses are performed at
the end of the burst cycle whatever the type of AHB burst access. However, the extra data values which are read
are not used by the FSMC and there is no functional failure. The number of dummy reads corresponds to the
AHB data size.
Example: if AHB data size = 32 bit and MEMSIZE= 16 bit, two extra 16-bit reads is performed.

Workaround

None

 STM32F100xC STM32F100xD STM32F100xE
DMA

ES0136 - Rev 7 page 11/28

2.6 ADC

2.6.1 Voltage glitch on ADC input 0

Description

A low-amplitude voltage glitch may be generated (on ADC input 0) on the PA0 pin, when the ADC is converting
with injection trigger. It is generated by internal coupling and synchronized to the beginning and the end of the
injection sequence, whatever the channel(s) to be converted.
The glitch amplitude is less than 150 mV with a typical duration of 10 ns (measured with the I/O configured as
high-impedance input and left unconnected). If PA0 is used as a digital output, this has no influence on the signal.
If PA0 is used has a digital input, it is not detected as a spurious transition, providing that PA0 is driven with an
impedance lower than 5 kΩ. This glitch does not have any influence on the remaining port A pin or on the ADC
conversion injection results, in single ADC configuration.
When using the ADC in dual mode with injection trigger, and in order to avoid any side effect, it is advised to
distribute the analog channels so that Channel 0 is configured as an injected channel.

Workaround

None.

2.7 TIM

2.7.1 PWM re-enabled in automatic output enable mode despite of system break

Description

In automatic output enable mode (AOE bit set in TIMx_BDTR register), the break input can be used to do a
cycle-by-cycle PWM control for a current mode regulation. A break signal (typically a comparator with a current
threshold) disables the PWM output(s) and the PWM is re-armed on the next counter period.
However, a system break (typically coming from the CSS Clock security System) is supposed to stop definitively
the PWM to avoid abnormal operation (for example with PWM frequency deviation).
In the current implementation, the timer system break input is not latched. As a consequence, a system break
indeed disables the PWM output(s) when it occurs, but PWM output(s) is (are) re-armed on the following counter
period.

Workaround

Preferably, implement control loops with the output clear enable function (OCxCE bit in the TIMx_CCMR1/CCMR2
register), leaving the use of break circuitry solely for internal and/or external fault protection (AOE bit reset).

2.7.2 TRGO and TRGO2 trigger output failure

Description

Some reference manual revisions may omit the following information.
The timers can be linked using ITRx inputs and TRGOx outputs. Additionally, the TRGOx outputs can be used as
triggers for other peripherals (for example ADC). Since this circuitry is based on pulse generation, care must be
taken when initializing master and slave peripherals or when using different master/slave clock frequencies:
• If the master timer generates a trigger output pulse on TRGOx prior to have the destination peripheral clock

enabled, the triggering system may fail.
• If the frequency of the destination peripheral is modified on-the-fly (clock prescaler modification), the

triggering system may fail.
As a conclusion, the clock of the slave timer or slave peripheral must be enabled prior to receiving events from
the master timer, and must not be changed on-the-fly while triggers are being received from the master timer.
This is a documentation issue rather than a product limitation.

 STM32F100xC STM32F100xD STM32F100xE
ADC

ES0136 - Rev 7 page 12/28

Workaround

No application workaround is required or applicable as long as the application handles the clock as indicated.

2.7.3 Consecutive compare event missed in specific conditions

Description

Every match of the counter (CNT) value with the compare register (CCR) value is expected to trigger a compare
event. However, if such matches occur in two consecutive counter clock cycles (as consequence of the CCR
value change between the two cycles), the second compare event is missed for the following CCR value
changes:
• in edge-aligned mode, from ARR to 0:

– first compare event: CNT = CCR = ARR
– second (missed) compare event: CNT = CCR = 0

• in center-aligned mode while up-counting, from ARR-1 to ARR (possibly a new ARR value if the period is
also changed) at the crest (that is, when TIMx_RCR = 0):
– first compare event: CNT = CCR = (ARR-1)
– second (missed) compare event: CNT = CCR = ARR

• in center-aligned mode while down-counting, from 1 to 0 at the valley (that is, when TIMx_RCR = 0):
– first compare event: CNT = CCR = 1
– second (missed) compare event: CNT = CCR = 0

This typically corresponds to an abrupt change of compare value aiming at creating a timer clock single-cycle-
wide pulse in toggle mode.
As a consequence:
• In toggle mode, the output only toggles once per counter period (squared waveform), whereas it is expected

to toggle twice within two consecutive counter cycles (and so exhibit a short pulse per counter period).
• In center mode, the compare interrupt flag does note rise and the interrupt is not generated.

Note: The timer output operates as expected in modes other than the toggle mode.

Workaround

None.

2.7.4 Output compare clear not working with external counter reset

Description

The output compare clear event (ocref_clr) is not correctly generated when the timer is configured in the following
slave modes: Reset mode, Combined reset + trigger mode, and Combined gated + reset mode.
The PWM output remains inactive during one extra PWM cycle if the following sequence occurs:
1. The output is cleared by the ocref_clr event.
2. The timer reset occurs before the programmed compare event.

Workaround

Apply one of the following measures:
• Use BKIN (or BKIN2 if available) input for clearing the output, selecting the Automatic output enable mode

(AOE = 1).
• Mask the timer reset during the PWM ON time to prevent it from occurring before the compare event (for

example with a spare timer compare channel open-drain output connected with the reset signal, pulling the
timer reset line down).

 STM32F100xC STM32F100xD STM32F100xE
TIM

ES0136 - Rev 7 page 13/28

2.7.5 Missing capture flag

Description

In capture mode, when a capture occurs while the CCRx register is being read, the capture flag (CCxIF) may
be cleared without the overcapture flag (CCxOF) being set. The new data are actually captured in the capture
register.

Workaround

An external interrupt can be enabled on the capture I/O just before reading the capture register (in the capture
interrupt), and disabled just after reading the captured data. Possibly, a missed capture is detected by the EXTI
peripheral.

2.7.6 Overcapture detected too early

Description

In capture mode, the overcapture flag (CCxOF) can be set even though no data have been lost.
This issue occurs when the following conditions are met:
• The capture occurs while the capture register is being read, an overcapture is detected even though the

previously captured data are correctly read and the new data are correctly stored into the capture register.
• The system is at the limit of an overcapture but no data are lost.

Workaround

None.

2.7.7 General-purpose timer regulation for 100% PWM

Description

When the OCREF_CLR functionality is activated, the OCxREF signal becomes de-asserted (and consequently
OCx is deasserted / OCxN is asserted) when a high level is applied on the OCREF_CLR signal. The PWM then
restarts (output re-enabled) at the next counter overflow.
But if the PWM is configured at 100% (CCxR > ARR), then it does not restart and OCxREF remains de-asserted.

Workaround

None.

2.8 IWDG

2.8.1 RVU flag not cleared at low APB clock frequency

Description

Successful write to the IWDG_RLR register raises the RVU flag and prevents further write accesses to the
register until the RVU flag is automatically cleared by hardware. However, at APB clock frequency lower than
twice the IWDG clock frequency, the hardware never clears that flag, and writing to the IWDG_RLR register is no
longer possible.

Workaround

Set the APB clock frequency higher than twice the IWDG clock frequency.

 STM32F100xC STM32F100xD STM32F100xE
IWDG

ES0136 - Rev 7 page 14/28

2.8.2 PVU flag not cleared at low APB clock frequency

Description

Successful write to the IWDG_PR register raises the PVU flag and prevents further write accesses to the register
until the PVU flag is automatically cleared by hardware. However, at APB clock frequency lower than twice the
IWDG clock frequency, the hardware never clears that flag, and writing to the IWDG_PR register is no longer
possible.

Workaround

Set the APB clock frequency higher than twice the IWDG clock frequency.

2.8.3 RVU flag not cleared at low APB clock frequency

Description

Successful write to the IWDG_RLR register raises the RVU flag and prevents further write accesses to the
register until the RVU flag is automatically cleared by hardware. However, at APB clock frequency lower than
twice the IWDG clock frequency, the hardware never clears that flag, and writing to the IWDG_RLR register is no
longer possible.

Workaround

Set the APB clock frequency higher than twice the IWDG clock frequency.

2.8.4 PVU flag not cleared at low APB clock frequency

Description

Successful write to the IWDG_PR register raises the PVU flag and prevents further write accesses to the register
until the PVU flag is automatically cleared by hardware. However, at APB clock frequency lower than twice the
IWDG clock frequency, the hardware never clears that flag, and writing to the IWDG_PR register is no longer
possible.

Workaround

Set the APB clock frequency higher than twice the IWDG clock frequency.

2.8.5 RVU and PVU flags are not cleared in Stop mode

Description

The RVU and PVU flags in the IWDG_SR register are set by hardware after a write access to the IWDG_RLR
or the IWDG_PR registers, respectively. If MCU enters Stop mode immediately after the write access, the RVU
and PVU flags are not cleared by hardware. Consequently the next time the application attempts to write to the
IWDG_RLR or the IWDG_PR registers, it waits in an infinite loop for the RVU and PVU flags to be cleared and the
IWDG generates a reset after the programmed time-out period.

Workaround

The application has to wait until the RVU and PVU flags in the IWDG_SR register are cleared before entering
Stop mode.

2.9 I2C

2.9.1 Some software events must be managed before the current byte is being transferred

Description

When the EV7, EV7_1, EV6_1, EV6_3, EV2, EV8, and EV3 events are not managed before

 STM32F100xC STM32F100xD STM32F100xE
I2C

ES0136 - Rev 7 page 15/28

the current byte is being transferred, problems may be encountered such as receiving an extra byte, reading the
same data twice or missing data.

Workaround

When it is not possible to manage the EV7, EV7_1, EV6_1, EV6_3, EV2, EV8, and EV3 events before the current
byte transfer and before the acknowledge pulse when changing the ACK control bit, it is recommended to:
• Workaround 1

Use the I2C with DMA in general, except when the Master is receiving a single byte.
• Workaround 2

Use I2C interrupts and boost their priorities to the highest one in the application to make them uninterruptible
• Workaround 3 (only for EV6_1 and EV6_3 events used in method 2)

EV6_1 event (used in master receiver 2 bytes):
Stretch SCL line between ADDR bit is cleared and ACK is cleared:
1. ADDR=1
2. Configure SCL I/O as GPIO open-drain output low
3. Clear ADDR by reading SR1 register followed by reading SR3
4. Program ACK=0
5. Configure SCL I/O as Alternate Function open drain
EV6_3 event (used in master receiver 1 byte):
Stretch SCL line between ADDR bit is cleared and STOP bit programming:
1. ADDR=1
2. Program ACK=0
3. Configure SCL I/O as GPIO open-drain output low
4. Clear ADDR by reading SR1 register followed by reading SR3
5. Program STOP=1
6. Configure SCL I/O as Alternate Function open drain

2.9.2 Wrong data read into data register

Description

In Master Receiver mode, when closing the communication using method 2, the content of the last read data can
be corrupted. The following two sequences are concerned by the limitation:
• Sequence 1: Transfer sequence for master receiver when N = 2:

1. BTF = (Data N-1 in DR and Data N in shift register)
2. Program STOP = 1,
3. Read DR twice (Read Data N-1 and Data N) just after programming the STOP.

• Sequence 2: Transfer sequence for master receiver when N > 2:
1. BTF = 1 (Data N-2 in DR and Data N-1 in shift register)
2. Program ACK = 0,
3. Read DataN-2 in DR.
4. Program STOP = 1,
5. Read DataN-1.

If the user software is not able to read the data N-1 before the STOP condition is generated on the bus, the
content of the shift register (data N) is corrupted (data N is shifted 1-bit to the left).

 STM32F100xC STM32F100xD STM32F100xE
I2C

ES0136 - Rev 7 page 16/28

Workaround

• Workaround 1
Stretch the SCL line by configuring SCL I/O as a general purpose I/O, open-drain output low level, before
the SET STOP in sequence 1 and before the READ Data N-2 in séquence 2. Then configure back the SCL
I/O as alternate function open-drain after the READ Data N-1. The sequences become:
Sequence 1:
1. BTF = 1 (Data N-1 in DR and Data N in shift register)
2. Configure SCL I/O as GPIO open-drain output low
3. Program STOP = 1
4. Read Data N-1
5. Configure SCL I/O as Alternate Function open drain
6. Read Data N
Sequence 2:
1. BTF = (Data N-2 in DR and Data N-1 in shift register)
2. Program ACK = 0
3. Configure SCL I/O as GPIO open-drain output low
4. Read Data N-2 in DR.
5. Program STOP = ,
6. Read Data N-1.
7. Configure SCL I/O as Alternate Function open drain

• Workaround 2
Mask all active interrupts between the SET STOP and the READ data N-1 for sequence 1; and between the
READ data N-2, the SET STOP and the READ data N-1 for Sequence 2.

• Workaround 3
Manage I2C RxNE events with DMA or interrupts with the highest priority level, so that the condition BTF = 1
never occurs.

2.9.3 SMBus standard not fully supported

Description

The I2C peripheral is not fully compliant with the SMBus v2.0 standard since It does not support the capability to
NACK an invalid byte/command.

Workaround

A higher-level mechanism should be used to verify that a write operation is being performed correctly at the target
device, such as:
1. Using the SMBAL pin if supported by the host
2. the alert response address (ARA) protocol
3. the Host notify protocol

2.9.4 Wrong behavior of I2C peripheral in master mode after a misplaced Stop

Description

If a misplaced Stop is generated on the bus, the peripheral cannot enter master mode properly:
• If a void message is received (START condition immediately followed by a STOP): the BERR (bus error) flag

is not set, and the I2C peripheral is not able to send a start condition on the bus after the write to the START
bit in the I2C_CR2 register.

• In the other cases of a misplaced STOP, the BERR flag is set. If the START bit is already set in I2C_CR2,
the START condition is not correctly generated on the bus and can create bus errors.

 STM32F100xC STM32F100xD STM32F100xE
I2C

ES0136 - Rev 7 page 17/28

Workaround

In the I2C standard, it is allowed to send a Stop only at the end of the full byte (8 bits + acknowledge), so
this scenario is not allowed. Other derived protocols like CBUS allow it, but they are not supported by the I2C
peripheral.
In case of a noisy environment in which unwanted bus errors can occur, it is recommended to implement a
timeout to ensure that after the START control bit is set, the SB (start bit) flag is set. In case the timeout has
elapsed, the peripheral must be reset by setting the SWRST bit in the I2C_CR2 control register. It should also be
reset in the same way if a BERR is detected while the START bit is set in I2C_CR2.

2.9.5 Mismatch on the “Setup time for a repeated Start condition” timing parameter

Description

In case of a repeated Start, the “Setup time for a repeated Start condition” (named Tsu;sta in the I2C
specification) can be slightly violated when the I2C operates in Master Standard mode at a frequency between
88 kHz and 100 kHz.
The issue can occur only in the following configuration:
• in Master mode
• in Standard mode at a frequency between 88 kHz and 100 kHz (no issue in Fast-mode)
• SCL rise time:

– If the slave does not stretch the clock and the SCL rise time is more than 300 ns (if the SCL rise time is
less than 300 ns the issue cannot occur)

– If the slave stretches the clock
The setup time can be violated independently of the APB peripheral frequency.

Workaround

Reduce the frequency down to 88 kHz or use the I²C Fast-mode if supported by the slave.

2.9.6 Data valid time (tVD;DAT) violated without the OVR flag being set

Description

The data valid time (tVD;DAT, tVD;ACK) described by the I²C standard can be violated (as well as the maximum
data hold time of the current data (tHD;DAT)) under the conditions described below. Moreover, if the data register
is written too late and close to the SCL rising edge, an error can be generated on the bus (SDA toggles while
SCL is high). These violations cannot be detected because the OVR flag is not set (no transmit buffer underrun is
detected).
This issue can occur only under the following conditions:
• In Slave transmit mode
• With clock stretching disabled (NOSTRETCH=1)
• If the software is late in writing the DR data register, but not late enough to set the OVR flag (the data

register is written before the SCL rising edge).

Workaround

If the master device allows it, use the clock stretching mechanism by programming the bit NOSTRETCH=0 in the
I2C_CR1 register.
If the master device does not allow it, ensure that the software writes to the data register fast enough after TXE or
ADDR events. For instance, use an interrupt on the TXE or ADDR flag and boost its priority to the higher level, or
use DMA. Use this "NOSTRETCH" mode with a slow I2C bus speed.

 STM32F100xC STM32F100xD STM32F100xE
I2C

ES0136 - Rev 7 page 18/28

Note: The first data byte to transmit must be written in the data register after the ADDR flag is cleared, and before the
next SCL rising edge, so that the time window for writing the first data byte in the data register is less than tLOW.
If this is not possible, a workaround can be used:
1. Clear the ADDR flag.
2. Wait for the OVR flag to be set.
3. Clear OVR and write the first data byte.
4. Then the time window for writing the next data byte is the time to transfer one byte. In this case, the master

must discard the first received data byte.

2.9.7 I2C analog filter may provide wrong value, locking BUSY flag and preventing master mode
entry

Description

The I2C analog filters embedded in the I2C I/Os may be tied to low level, whereas SCL and SDA lines are kept at
high level. This can occur after an MCU power-on reset, or during ESD stress. Consequently, the I2C BUSY flag
is set, and the I2C cannot enter master mode (START condition cannot be sent). The I2C BUSY flag cannot be
cleared by the SWRST control bit, nor by a peripheral or a system reset. BUSY bit is cleared under reset, but it
is set high again as soon as the reset is released, because the analog filter output is still at low level. This issue
occurs randomly.

Note: Under the same conditions, the I2C analog filters may also provide a high level, whereas SCL and SDA lines are
kept to low level. This should not create issues as the filters output is correct after next SCL and SDA transition.

Workaround

The SCL and SDA analog filter output is updated after a transition occurs on the SCL and SDA line respectively.
The SCL and SDA transition can be forced by software configuring the I2C I/Os in output mode. Then, once the
analog filters are unlocked and output the SCL and SDA lines level, the BUSY flag can be reset with a software
reset, and the I2C can enter master mode. Therefore, the following sequence must be applied:
1. Disable the I2C peripheral by clearing the PE bit in I2Cx_CR1 register.
2. Configure the SCL and SDA I/Os as General Purpose Output Open-Drain, High level (Write 1 to

GPIOx_ODR).
3. Check SCL and SDA High level in GPIOx_IDR.
4. Configure the SDA I/O as General Purpose Output Open-Drain, Low level (Write 0 to GPIOx_ODR).
5. Check SDA Low level in GPIOx_IDR.
6. Configure the SCL I/O as General Purpose Output Open-Drain, Low level (Write 0 to GPIOx_ODR).
7. Check SCL Low level in GPIOx_IDR.
8. Configure the SCL I/O as General Purpose Output Open-Drain, High level (Write 1 to GPIOx_ODR).
9. Check SCL High level in GPIOx_IDR.
10. Configure the SDA I/O as General Purpose Output Open-Drain , High level (Write 1 to GPIOx_ODR).
11. Check SDA High level in GPIOx_IDR.
12. Configure the SCL and SDA I/Os as Alternate function Open-Drain.
13. Set SWRST bit in I2Cx_CR1 register.
14. Clear SWRST bit in I2Cx_CR1 register.
15. Enable the I2C peripheral by setting the PE bit in I2Cx_CR1 register.

2.10 USART

2.10.1 Idle frame is not detected if receiver clock speed is deviated

Description

If the USART receives an idle frame followed by a character, and the clock of the transmitter device is faster than
the USART receiver clock, the USART receive signal falls too early when receiving the character start bit, with the
result that the idle frame is not detected (IDLE flag is not set).

 STM32F100xC STM32F100xD STM32F100xE
USART

ES0136 - Rev 7 page 19/28

Workaround

None.

2.10.2 In full-duplex mode, the Parity Error (PE) flag can be cleared by writing the data register

Description

In full-duplex mode, when the Parity Error flag is set by the receiver at the end of a reception, it may be cleared
while transmitting by reading the USART_SR register to check the TXE or TC flags and writing data in the data
register.
Consequently, the software receiver can read the PE flag as 0 even if a parity error occurred.

Workaround

The Parity Error flag should be checked after the end of reception and before transmission.

2.10.3 Parity Error (PE) flag is not set when receiving in Mute mode using address mark detection

Description

The USART receiver is in Mute mode and is configured to exit the Mute mode using the address mark detection.
When the USART receiver recognizes a valid address with a parity error, it exits the Mute mode without setting
the Parity Error flag.

Workaround

None.

2.10.4 Break frame is transmitted regardless of nCTS input line status

Description

When CTS hardware flow control is enabled (CTSE = 1) and the Send Break bit (SBK) is set, the transmitter
sends a break frame at the end of current transmission regardless of nCTS input line status.
Consequently, if an external receiver device is not ready to accept a frame, the transmitted break frame is lost.

Workaround

None.

2.10.5 nRTS signal abnormally driven low after a protocol violation

Description

When RTS hardware flow control is enabled, the nRTS signal goes high when a data is received. If this data was
not read and a new data is sent to the USART (protocol violation), the nRTS signal goes back to low level at the
end of this new data.
Consequently, the sender gets the wrong information that the USART is ready to receive further data.
On USART side, an overrun is detected which indicates that some data has been lost.

Workaround

• Workaround 1:
After data reception and before reading the data in the data register, the software takes control of the nRTS
pin using the GPIO registers and keeps it high as long as needed. If the application knows the USART is not
ready and that further data received reception from the other device may be discarded, it keeps the nRTS
pin at high level. It then releases the nRTS pin when the USART is ready to continue reception.

• Workaround 2: Ensure that the received data is always read in a time window less than the duration of the
2nd data reception. One solution would be to handle all data reception by DMA.

 STM32F100xC STM32F100xD STM32F100xE
USART

ES0136 - Rev 7 page 20/28

Note: These workarounds are needed only if the other UART device has violated the protocol. In most systems (no
limitation on the other device), the USART works fine and no workaround is needed.

2.11 SPI/I2S

2.11.1 CRC still sensitive to communication clock when SPI is in slave mode even with NSS high

Description

When the SPI is configured in slave mode with the CRC feature enabled, the CRC is calculated even if the NSS
pin deselects the SPI (high level applied on the NSS pin).

Workaround

The CRC has to be cleared on both Master and Slave sides between the slave deselection (high level on NSS)
and the slave selection (low level on NSS), in order to resynchronize the Master and Slave for their respective
CRC calculation.
To procedure to clear the CRC is the following:
1. disable the SPI (SPE = 0)
2. clear the CRCEN bit
3. set the CRCEN bit
4. enable the SPI (SPE = 1)

2.11.2 SPI CRC may be corrupted when a peripheral connected to the same DMA channel of the SPI is
under DMA transaction close to the end of transfer or end of transfer -1

Description

In the following conditions, the CRC may be frozen before the CRCNEXT bit is written, resulting in a CRC error:
• SPI is slave or master.
• Full duplex or simplex mode is used.
• CRC feature is enabled.
• SPI is configured to manage data transfers by software (interrupt or polling).
• A peripheral, mapped on the same DMA channel as the SPI, is executing DMA transfers.

Workaround

If the application allows it, you can use the DMA for SPI transfers.

2.11.3 Wrong WS signal generation in 16-bit extended to 32-bit PCM long synchronisation mode

Description

When I2S is master with PCM long synchronization is selected as16-bit data frame extended to 32-bit, the WS
signal is generated every 16 bits rather than every 32 bits.

Workaround

Only the 16-bit mode with no data extension can be used when the I2S is master and when the selected mode
has to be PCM long synchronization mode.

2.11.4 In I2S slave mode, WS level must be set by the external master when enabling the I2S

Description

In slave mode the WS signal level is used only to start the communication. If the I2S (in slave mode) is enabled
while the master is already sending the clock and the WS signal level is low (for I2S protocol) or is high (for the
LSB or MSB-justified mode), the slave starts communicating data immediately. In this case the master and slave
is desynchronized throughout the whole communication.

 STM32F100xC STM32F100xD STM32F100xE
SPI/I2S

ES0136 - Rev 7 page 21/28

Workaround

The I2S peripheral must be enabled when the external master sets the WS line at:
• High level when the I2S protocol is selected.
• Low level when the LSB or MSB-justified mode is selected.

2.11.5 I2S slave mode desynchronisation with the master during communication

Description

In I2S slave mode, if glitches on SCK or WS signals are generated at an unexpected time, a desynchronization of
the master and the slave occurs. No error is reported to allow audio system to re-synchronize.

Workaround

The following workarounds can be applied in order to detect and react after a desynchronization by disabling and
enabling I2S peripheral in order to resynchronize with the master.
1. Monitoring the I2S WS signal through an external interrupt to check the I2S WS signal status.
2. Monitoring the I2S clock signal through an input capture interrupt to check the I2S clock signal status.
3. Monitoring the I2S clock signal through an input capture interrupt and the I2S WS signal via an external

interrupt to check the I2S clock and I2S WS signals status.

 STM32F100xC STM32F100xD STM32F100xE
SPI/I2S

ES0136 - Rev 7 page 22/28

Important security notice

The STMicroelectronics group of companies (ST) places a high value on product security, which is why the
ST product(s) identified in this documentation may be certified by various security certification bodies and/or
may implement our own security measures as set forth herein. However, no level of security certification and/or
built-in security measures can guarantee that ST products are resistant to all forms of attacks. As such, it is the
responsibility of each of ST's customers to determine if the level of security provided in an ST product meets the
customer needs both in relation to the ST product alone, as well as when combined with other components and/or
software for the customer end product or application. In particular, take note that:
• ST products may have been certified by one or more security certification bodies, such as Platform

Security Architecture (www.psacertified.org) and/or Security Evaluation standard for IoT Platforms
(www.trustcb.com). For details concerning whether the ST product(s) referenced herein have received
security certification along with the level and current status of such certification, either visit the relevant
certification standards website or go to the relevant product page on www.st.com for the most up to date
information. As the status and/or level of security certification for an ST product can change from time to
time, customers should re-check security certification status/level as needed. If an ST product is not shown
to be certified under a particular security standard, customers should not assume it is certified.

• Certification bodies have the right to evaluate, grant and revoke security certification in relation to ST
products. These certification bodies are therefore independently responsible for granting or revoking
security certification for an ST product, and ST does not take any responsibility for mistakes, evaluations,
assessments, testing, or other activity carried out by the certification body with respect to any ST product.

• Industry-based cryptographic algorithms (such as AES, DES, or MD5) and other open standard technologies
which may be used in conjunction with an ST product are based on standards which were not developed
by ST. ST does not take responsibility for any flaws in such cryptographic algorithms or open technologies
or for any methods which have been or may be developed to bypass, decrypt or crack such algorithms or
technologies.

• While robust security testing may be done, no level of certification can absolutely guarantee protections
against all attacks, including, for example, against advanced attacks which have not been tested for, against
new or unidentified forms of attack, or against any form of attack when using an ST product outside of
its specification or intended use, or in conjunction with other components or software which are used
by customer to create their end product or application. ST is not responsible for resistance against such
attacks. As such, regardless of the incorporated security features and/or any information or support that
may be provided by ST, each customer is solely responsible for determining if the level of attacks tested
for meets their needs, both in relation to the ST product alone and when incorporated into a customer end
product or application.

• All security features of ST products (inclusive of any hardware, software, documentation, and the like),
including but not limited to any enhanced security features added by ST, are provided on an "AS
IS" BASIS. AS SUCH, TO THE EXTENT PERMITTED BY APPLICABLE LAW, ST DISCLAIMS ALL
WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES
OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, unless the applicable written and
signed contract terms specifically provide otherwise.

 STM32F100xC STM32F100xD STM32F100xE

ES0136 - Rev 7 page 23/28

Revision history

Table 5. Document revision history

Date Version Changes

15-Oct-2010 1 Initial release.

22-Feb-2011 2

Updated workarounds in Section 2.10.1: Some software events must be
managed before the current byte is being transferred and Section 2.10.6:
Wrong data read into data register.

Added section Section 2.11.5: nRTS signal abnormally driven low after a
protocol violation.

07-Oct-2013 3

Added:
• Section 2.4: Wakeup sequence from Standby mode when using more

than one wakeup source
• Section 2.5: LSE start-up in harsh environments – Section 2.10.7:

I2C analog filter may provide wrong value, locking BUSY flag and
preventing master mode entry

Updated Section 2.7.5: I2C2 with SPI2, USART3 and TIM12_CH1 – Table 4:
Summary of silicon limitations.

11-Apr-2016 4

Added Section 2.15: New IDD max values in case of Run mode, code
executed from RAM, AHB clock = 24 MHz, external clock, all peripherals
disabled.

Updated Table 4: Summary of silicon limitations.

30-May-2017 5 Added Section 2.7.9: I2C1 with SPI3 used in master mode Updated: – Table
4: Summary of silicon limitations.

16-Apr-2018 6

Updated Section 1: Arm® 32-bit Cortex®-M3 limitations. Updated Table 4:
Summary of silicon limitations.

Added Section 2.6: RDP protection. Updated Figure 4: LQFP64 top package
view. Minor text edits across the whole document.

19-Aug-2022 7

Document restructured.

Added Interrupted loads to SP can cause erroneous behavior and SVC and
BusFault/MemManage may occur out of order.

Added DMA disable failure and error flag omission upon simultaneous transfer
error and global flag clear and Byte and half-word accesses not supported.

Added Dummy read cycles inserted when reading synchronous memories.

Added PWM re-enabled in automatic output enable mode despite of system
break, TRGO and TRGO2 trigger output failure, Consecutive compare event
missed in specific conditions and Output compare clear not working with
external counter reset.

Added RVU flag not cleared at low APB clock frequency, PVU flag not cleared
at low APB clock frequency and RVU and PVU flags are not cleared in Stop
mode.

Added CRC still sensitive to communication clock when SPI is in slave mode
even with NSS high, SPI CRC may be corrupted when a peripheral connected
to the same DMA channel of the SPI is under DMA transaction close to the
end of transfer or end of transfer -1, Wrong WS signal generation in 16-bit
extended to 32-bit PCM long synchronisation mode, In I2S slave mode, WS
level must be set by the external master when enabling the I2S and I2S slave
mode desynchronisation with the master during communication.

 STM32F100xC STM32F100xD STM32F100xE

ES0136 - Rev 7 page 24/28

Contents

1 Summary of device errata. .2
2 Description of device errata. .4

2.1 Core . 4

2.1.1 Cortex®-M3 LDRD with base in list may result in incorrect base register when interrupted or
faulted. 4

2.1.2 Cortex®-M3 event register is not set by interrupts and debug . 4

2.1.3 Interrupted loads to SP can cause erroneous behavior . 4

2.1.4 SVC and BusFault/MemManage may occur out of order. 5

2.1.5 Arm® Cortex®-M3 BKPT in debug monitor mode can cause DFSR mismatch 5

2.1.6 Arm® Cortex®-M3 may freeze for SLEEPONEXIT single instruction ISR 5

2.2 System . 6
2.2.1 Debugging Stop mode and SysTick timer . 6

2.2.2 Debugging Stop mode with WFE entry . 6

2.2.3 Wakeup sequence from Standby mode when using more than one wakeup source 6

2.2.4 LSE startup in harsh environments . 7

2.2.5 RDP protection . 7

2.2.6 Boundary scan TAP: wrong pattern sent out after the "capture IR” state 7

2.2.7 Flash memory BSY bit delay versus STRT bit setting . 8

2.2.8 LSI clock stabilization time . 8

2.2.9 New IDD max values in case of Run mode, code executed from RAM, AHB clock = 24 MHz,
external clock, all peripherals disabled . 8

2.2.10 I2C1 with SPI3 used in master mode . 8

2.3 GPIO. 9
2.3.1 SPI1 in slave mode and USART2 in synchronous mode. 9

2.3.2 SPI1 in master mode and USART2 in synchronous mode . 9

2.3.3 SPI2 in slave mode and USART3 in synchronous mode. 9

2.3.4 SPI2 in master mode and USART3 in synchronous mode . 9

2.3.5 I2C2 with SPI2 and USART3 . 10

2.3.6 I2C1 with SPI1 remapped and used in master mode. 10

2.3.7 I2C1 and TIM3_CH2 remapped . 10

2.3.8 USARTx_TX pin usage . 10

2.4 DMA . 11
2.4.1 DMA disable failure and error flag omission upon simultaneous transfer error and global

flag clear . 11

2.4.2 Byte and half-word accesses not supported . 11

2.5 FSMC . 11

 STM32F100xC STM32F100xD STM32F100xE
Contents

ES0136 - Rev 7 page 25/28

2.5.1 Dummy read cycles inserted when reading synchronous memories 11

2.6 ADC . 12
2.6.1 Voltage glitch on ADC input 0 . 12

2.7 TIM . 12
2.7.1 PWM re-enabled in automatic output enable mode despite of system break. 12

2.7.2 TRGO and TRGO2 trigger output failure . 12

2.7.3 Consecutive compare event missed in specific conditions . 13

2.7.4 Output compare clear not working with external counter reset . 13

2.7.5 Missing capture flag . 14

2.7.6 Overcapture detected too early . 14

2.7.7 General-purpose timer regulation for 100% PWM . 14

2.8 IWDG . 14
2.8.1 RVU flag not cleared at low APB clock frequency . 14

2.8.2 PVU flag not cleared at low APB clock frequency . 15

2.8.3 RVU flag not cleared at low APB clock frequency . 15

2.8.4 PVU flag not cleared at low APB clock frequency . 15

2.8.5 RVU and PVU flags are not cleared in Stop mode . 15

2.9 I2C . 15
2.9.1 Some software events must be managed before the current byte is being transferred . . . 15

2.9.2 Wrong data read into data register . 16

2.9.3 SMBus standard not fully supported . 17

2.9.4 Wrong behavior of I2C peripheral in master mode after a misplaced Stop 17

2.9.5 Mismatch on the “Setup time for a repeated Start condition” timing parameter 18

2.9.6 Data valid time (tVD;DAT) violated without the OVR flag being set 18

2.9.7 I2C analog filter may provide wrong value, locking BUSY flag and preventing master mode
entry . 19

2.10 USART . 19
2.10.1 Idle frame is not detected if receiver clock speed is deviated . 19

2.10.2 In full-duplex mode, the Parity Error (PE) flag can be cleared by writing the data register. 20

2.10.3 Parity Error (PE) flag is not set when receiving in Mute mode using address mark detection
. 20

2.10.4 Break frame is transmitted regardless of nCTS input line status . 20

2.10.5 nRTS signal abnormally driven low after a protocol violation. 20

2.11 SPI/I2S . 21
2.11.1 CRC still sensitive to communication clock when SPI is in slave mode even with NSS high .

. 21

2.11.2 SPI CRC may be corrupted when a peripheral connected to the same DMA channel of the
SPI is under DMA transaction close to the end of transfer or end of transfer -1. 21

 STM32F100xC STM32F100xD STM32F100xE
Contents

ES0136 - Rev 7 page 26/28

2.11.3 Wrong WS signal generation in 16-bit extended to 32-bit PCM long synchronisation mode .
. 21

2.11.4 In I2S slave mode, WS level must be set by the external master when enabling the I2S . 21

2.11.5 I2S slave mode desynchronisation with the master during communication 22

Important security notice .23
Revision history .24

 STM32F100xC STM32F100xD STM32F100xE
Contents

ES0136 - Rev 7 page 27/28

IMPORTANT NOTICE – READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of
purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names
are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2022 STMicroelectronics – All rights reserved

 STM32F100xC STM32F100xD STM32F100xE

ES0136 - Rev 7 page 28/28

http://www.st.com/trademarks

	1 Summary of device errata
	2 Description of device errata
	2.1 Core
	2.1.1 Cortex(R)-M3 LDRD with base in list may result in incorrect base register when interrupted or faulted
	2.1.2 Cortex(R)-M3 event register is not set by interrupts and debug
	2.1.3 Interrupted loads to SP can cause erroneous behavior
	2.1.4 SVC and BusFault/MemManage may occur out of order
	2.1.5 Arm(R) Cortex(R)-M3 BKPT in debug monitor mode can cause DFSR mismatch
	2.1.6 Arm(R) Cortex(R)-M3 may freeze for SLEEPONEXIT single instruction ISR

	2.2 System
	2.2.1 Debugging Stop mode and SysTick timer
	2.2.2 Debugging Stop mode with WFE entry
	2.2.3 Wakeup sequence from Standby mode when using more than one wakeup source
	2.2.4 LSE startup in harsh environments
	2.2.5 RDP protection
	2.2.6 Boundary scan TAP: wrong pattern sent out after the "capture IR” state
	2.2.7 Flash memory BSY bit delay versus STRT bit setting
	2.2.8 LSI clock stabilization time
	2.2.9 New IDD max values in case of Run mode, code executed from RAM, AHB clock = 24 MHz, external clock, all peripherals disabled
	2.2.10 I2C1 with SPI3 used in master mode

	2.3 GPIO
	2.3.1 SPI1 in slave mode and USART2 in synchronous mode
	2.3.2 SPI1 in master mode and USART2 in synchronous mode
	2.3.3 SPI2 in slave mode and USART3 in synchronous mode
	2.3.4 SPI2 in master mode and USART3 in synchronous mode
	2.3.5 I2C2 with SPI2 and USART3
	2.3.6 I2C1 with SPI1 remapped and used in master mode
	2.3.7 I2C1 and TIM3_CH2 remapped
	2.3.8 USARTx_TX pin usage

	2.4 DMA
	2.4.1 DMA disable failure and error flag omission upon simultaneous transfer error and global flag clear
	2.4.2 Byte and half-word accesses not supported

	2.5 FSMC
	2.5.1 Dummy read cycles inserted when reading synchronous memories

	2.6 ADC
	2.6.1 Voltage glitch on ADC input 0

	2.7 TIM
	2.7.1 PWM re-enabled in automatic output enable mode despite of system break
	2.7.2 TRGO and TRGO2 trigger output failure
	2.7.3 Consecutive compare event missed in specific conditions
	2.7.4 Output compare clear not working with external counter reset
	2.7.5 Missing capture flag
	2.7.6 Overcapture detected too early
	2.7.7 General-purpose timer regulation for 100% PWM

	2.8 IWDG
	2.8.1 RVU flag not cleared at low APB clock frequency
	2.8.2 PVU flag not cleared at low APB clock frequency
	2.8.3 RVU flag not cleared at low APB clock frequency
	2.8.4 PVU flag not cleared at low APB clock frequency
	2.8.5 RVU and PVU flags are not cleared in Stop mode

	2.9 I2C
	2.9.1 Some software events must be managed before the current byte is being transferred
	2.9.2 Wrong data read into data register
	2.9.3 SMBus standard not fully supported
	2.9.4 Wrong behavior of I2C peripheral in master mode after a misplaced Stop
	2.9.5 Mismatch on the “Setup time for a repeated Start condition” timing parameter
	2.9.6 Data valid time (tVD;DAT) violated without the OVR flag being set
	2.9.7 I2C analog filter may provide wrong value, locking BUSY flag and preventing master mode entry

	2.10 USART
	2.10.1 Idle frame is not detected if receiver clock speed is deviated
	2.10.2 In full-duplex mode, the Parity Error (PE) flag can be cleared by writing the data register
	2.10.3 Parity Error (PE) flag is not set when receiving in Mute mode using address mark detection
	2.10.4 Break frame is transmitted regardless of nCTS input line status
	2.10.5 nRTS signal abnormally driven low after a protocol violation

	2.11 SPI/I2S
	2.11.1 CRC still sensitive to communication clock when SPI is in slave mode even with NSS high
	2.11.2 SPI CRC may be corrupted when a peripheral connected to the same DMA channel of the SPI is under DMA transaction close to the end of transfer or end of transfer -1
	2.11.3 Wrong WS signal generation in 16-bit extended to 32-bit PCM long synchronisation mode
	2.11.4 In I2S slave mode, WS level must be set by the external master when enabling the I2S
	2.11.5 I2S slave mode desynchronisation with the master during communication

	 Important security notice
	 Revision history

