

CircuitPython Essentials
Created by Kattni Rembor

https://learn.adafruit.com/circuitpython-essentials

Last updated on 2022-02-14 12:29:38 PM EST

©Adafruit Industries Page 1 of 115

5

5

6

6

7

9

10

10

11

11

11

11

12

12

12

12

12

14

17

17

18

18

18

19

19

23

24

24

24

25

25

29

29

31

33

38

39

39

41

41

41

42

48

Table of Contents

CircuitPython Essentials

CircuitPython Pins and Modules

• CircuitPython Pins

• import board

• I2C, SPI, and UART

• What Are All the Available Names?

• Microcontroller Pin Names

• CircuitPython Built-In Modules

CircuitPython Built-Ins

• Thing That Are Built In and Work

• Flow Control

• Math

• Tuples, Lists, Arrays, and Dictionaries

• Classes, Objects and Functions

• Lambdas

• Random Numbers

CircuitPython Digital In & Out

• Find the pins!

• Read the Docs

CircuitPython Analog In

• Creating the analog input

• get_voltage Helper

• Main Loop

• Changing It Up

• Wire it up

• Reading Analog Pin Values

CircuitPython Analog Out

• Creating an analog output

• Setting the analog output

• Main Loop

• Find the pin

CircuitPython Audio Out

• Play a Tone

• Play a Wave File

• Wire It Up

CircuitPython MP3 Audio

CircuitPython PWM

• PWM with Fixed Frequency

• Create a PWM Output

• Main Loop

• PWM Output with Variable Frequency

• Wire it up

• Where's My PWM?

©Adafruit Industries Page 2 of 115

49

49

51

52

53

53

54

55

58

59

59

60

61

62

63

63

64

65

66

66

67

68

68

69

70

72

73

73

74

74

75

76

77

80

81

82

82

85

86

88

89

89

91

91

92

92

94

94

CircuitPython Servo

• Servo Wiring

• Standard Servo Code

• Continuous Servo Code

CircuitPython Cap Touch

• Create the Touch Input

• Main Loop

• Find the Pin(s)

CircuitPython Internal RGB LED

• Create the LED

• Brightness

• Main Loop

• Making Rainbows (Because Who Doesn't Love 'Em!)

• Circuit Playground Express Rainbow

CircuitPython NeoPixel

• Wiring It Up

• The Code

• Create the LED

• NeoPixel Helpers

• Main Loop

• NeoPixel RGBW

• Read the Docs

CircuitPython DotStar

• Wire It Up

• The Code

• Create the LED

• DotStar Helpers

• Main Loop

• Is it SPI?

• Read the Docs

CircuitPython UART Serial

• The Code

• Wire It Up

• Where's my UART?

• Trinket M0: Create UART before I2C

CircuitPython I2C

• Wire It Up

• Find Your Sensor

• I2C Sensor Data

• Where's my I2C?

CircuitPython HID Keyboard and Mouse

• CircuitPython Keyboard Emulator

• Create the Objects and Variables

• The Main Loop

• Non-US Keyboard Layouts

• CircuitPython Mouse Emulator

• Create the Objects and Variables

• CircuitPython HID Mouse Helpers

©Adafruit Industries Page 3 of 115

95

95

98

100

101

101

102

102

103

103

104

104

105

105

106

106

107

107

107

• Main Loop

CircuitPython Storage

• Logging the Temperature

CircuitPython CPU Temp

CircuitPython Expectations

• Always Run the Latest Version of CircuitPython and Libraries

• I have to continue using CircuitPython 3.x or 2.x, where can I find compatible libraries?

• Switching Between CircuitPython and Arduino

• The Difference Between Express And Non-Express Boards

• Non-Express Boards: Gemma, Trinket, and QT Py

• Differences Between CircuitPython and MicroPython

• Differences Between CircuitPython and Python

CircuitPython Resetting

• Soft Reset

• Hard Reset

• Reset Into Specific Mode

• More Info

CircuitPython Libraries and Drivers

CircuitPython Libraries

©Adafruit Industries Page 4 of 115

CircuitPython Essentials

You've gone through the Welcome to CircuitPython guide (https://adafru.it/cpy-

welcome). You've already gotten everything setup, and you've gotten CircuitPython

running. Great! Now what? CircuitPython Essentials!

There are a number of core modules built into CircuitPython and commonly used

libraries available. This guide will introduce you to these and show you an example of

how to use each one.

Each section will present you with a piece of code designed to work with different

boards, and explain how to use the code with each board. These examples work with

any board designed for CircuitPython, including Circuit Playground Express, Trinket

M0, Gemma M0, QT Py, ItsyBitsy M0 Express, ItsyBitsy M4 Express, Feather M0

Express, Feather M4 Express, Metro M4 Express, Metro M0 Express, Trellis M4

Express, and Grand Central M4 Express.

Some examples require external components, such as switches or sensors. You'll find

wiring diagrams where applicable to show you how to wire up the necessary

components to work with each example.

Let's get started learning the CircuitPython Essentials!

CircuitPython Pins and Modules

CircuitPython is designed to run on microcontrollers and allows you to interface with

all kinds of sensors, inputs and other hardware peripherals. There are tons of guides

showing how to wire up a circuit, and use CircuitPython to, for example, read data

from a sensor, or detect a button press. Most CircuitPython code includes hardware

setup which requires various modules, such as board or digitalio . You import

these modules and then use them in your code. How does CircuitPython know to look

©Adafruit Industries Page 5 of 115

file:///home/welcome-to-circuitpython

for hardware in the specific place you connected it, and where do these modules

come from?

This page explains both. You'll learn how CircuitPython finds the pins on your

microcontroller board, including how to find the available pins for your board and

what each pin is named. You'll also learn about the modules built into CircuitPython,

including how to find all the modules available for your board.

CircuitPython Pins

When using hardware peripherals with a CircuitPython compatible microcontroller,

you'll almost certainly be utilising pins. This section will cover how to access your

board's pins using CircuitPython, how to discover what pins and board-specific

objects are available in CircuitPython for your board, how to use the board-specific

objects, and how to determine all available pin names for a given pin on your board.

import board

When you're using any kind of hardware peripherals wired up to your microcontroller

board, the import list in your code will include import board . The board module is

built into CircuitPython, and is used to provide access to a series of board-specific

objects, including pins. Take a look at your microcontroller board. You'll notice that

next to the pins are pin labels. You can always access a pin by its pin label. However,

there are almost always multiple names for a given pin.

To see all the available board-specific objects and pins for your board, enter the REPL

(>>>) and run the following commands:

import board
dir(board)

Here is the output for the QT Py. You may have a different board, and this list will vary,

based on the board.

©Adafruit Industries Page 6 of 115

The following pins have labels on the physical QT Py board: A0, A1, A2, A3, SDA, SCL,

TX, RX, SCK, MISO, and MOSI. You see that there are many more entries available in

board than the labels on the QT Py.

You can use the pin names on the physical board, regardless of whether they seem to

be specific to a certain protocol.

For example, you do not have to use the SDA pin for I2C - you can use it for a button

or LED.

On the flip side, there may be multiple names for one pin. For example, on the QT Py,

pin A0 is labeled on the physical board silkscreen, but it is available in CircuitPython

as both A0 and D0 . For more information on finding all the names for a given pin,

see the What Are All the Available Pin Names? (https://adafru.it/QkA) section below.

The results of dir(board) for CircuitPython compatible boards will look similar to

the results for the QT Py in terms of the pin names, e.g. A0, D0, etc. However, some

boards, for example, the Metro ESP32-S2, have different styled pin names. Here is the

output for the Metro ESP32-S2.

Note that most of the pins are named in an IO# style, such as IO1 and IO2. Those pins

on the physical board are labeled only with a number, so an easy way to know how to

access them in CircuitPython, is to run those commands in the REPL and find the pin

naming scheme.

I2C, SPI, and UART

You'll also see there are often (but not always!) three special board-specific objects

included: I2C , SPI , and UART - each one is for the default pin-set used for each of

the three common protocol busses they are named for. These are called singletons.

If your code is failing to run because it can't find a pin name you provided, verify

that you have the proper pin name by running these commands in the REPL.

©Adafruit Industries Page 7 of 115

https://learn.adafruit.com/circuitpython-essentials/circuitpython-pins-and-modules#what-are-all-the-available-names-3082670-14

What's a singleton? When you create an object in CircuitPython, you are instantiating

('creating') it. Instantiating an object means you are creating an instance of the object

with the unique values that are provided, or "passed", to it.

For example, When you instantiate an I2C object using the busio module, it expects

two pins: clock and data, typically SCL and SDA. It often looks like this:

i2c = busio.I2C(board.SCL, board.SDA)

Then, you pass the I2C object to a driver for the hardware you're using. For example,

if you were using the TSL2591 light sensor and its CircuitPython library, the next line

of code would be:

tsl2591 = adafruit_tsl2591.TSL2591(i2c)

However, CircuitPython makes this simpler by including the I2C singleton in the boa

rd module. Instead of the two lines of code above, you simply provide the singleton

as the I2C object. So if you were using the TSL2591 and its CircuitPython library, the

two above lines of code would be replaced with:

tsl2591 = adafruit_tsl2591.TSL2591(board.I2C())

This eliminates the need for the busio module, and simplifies the code. Behind the

scenes, the board.I2C() object is instantiated when you call it, but not before, and

on subsequent calls, it returns the same object. Basically, it does not create an object

until you need it, and provides the same object every time you need it. You can call

board.I2C() as many times as you like, and it will always return the same object.

The board.I2C(), board.SPI(), and board.UART() singletons do not exist on all

boards. They exist if there are board markings for the default pins for those

devices.

The UART/SPI/I2C singletons will use the 'default' bus pins for each board - often

labeled as RX/TX (UART), MOSI/MISO/SCK (SPI), or SDA/SCL (I2C). Check your

board documentation/pinout for the default busses.

©Adafruit Industries Page 8 of 115

What Are All the Available Names?

Many pins on CircuitPython compatible microcontroller boards have multiple names,

however, typically, there's only one name labeled on the physical board. So how do

you find out what the other available pin names are? Simple, with the following script!

Each line printed out to the serial console contains the set of names for a particular

pin.

On a microcontroller board running CircuitPython, connect to the serial console. Then,

save the following as code.py on your CIRCUITPY drive.

"""CircuitPython Essentials Pin Map Script"""

import microcontroller
import board

board_pins = []
for pin in dir(microcontroller.pin):
 if isinstance(getattr(microcontroller.pin, pin), microcontroller.Pin):
 pins = []
 for alias in dir(board):
 if getattr(board, alias) is getattr(microcontroller.pin, pin):
 pins.append("board.{}".format(alias))

 if len(pins) > 0:
 board_pins.append(" ".join(pins))

for pins in sorted(board_pins):
 print(pins)

Here is the result when this script is run on QT Py:

Each line represents a single pin. Find the line containing the pin name that's labeled

on the physical board, and you'll find the other names available for that pin. For

example, the first pin on the board is labeled A0. The first line in the output is board

.A0 board.D0 . This means that you can access pin A0 with both board.A0 and bo

ard.D0 .

You'll notice there are two "pins" that aren't labeled on the board but appear in the

list: board.NEOPIXEL and board.NEOPIXEL_POWER . Many boards have several of

these special pins that give you access to built-in board hardware, such as an LED or

©Adafruit Industries Page 9 of 115

an on-board sensor. The Qt Py only has one on-board extra piece of hardware, a

NeoPixel LED, so there's only the one available in the list. But you can also control

whether or not power is applied to the NeoPixel, so there's a separate pin for that.

That's all there is to figuring out the available names for a pin on a compatible

microcontroller board in CircuitPython!

Microcontroller Pin Names

The pin names available to you in the CircuitPython board module are not the same

as the names of the pins on the microcontroller itself. The board pin names are

aliases to the microcontroller pin names. If you look at the datasheet for your

microcontroller, you'll likely find a pinout with a series of pin names, such as "PA18" or

"GPIO5". If you want to get to the actual microcontroller pin name in CircuitPython,

you'll need the microcontroller.pin module. As with board , you can run dir(m

icrocontroller.pin) in the REPL to receive a list of the microcontroller pin names.

CircuitPython Built-In Modules

There is a set of modules used in most CircuitPython programs. One or more of these

modules is always used in projects involving hardware. Often hardware requires

installing a separate library from the Adafruit CircuitPython Bundle. But, if you try to

find board or digitalio in the same bundle, you'll come up lacking. So, where do

these modules come from? They're built into CircuitPython! You can find an

comprehensive list of built-in CircuitPython modules and the technical details of their

functionality from CircuitPython here (https://adafru.it/QkB) and the Python-like

modules included here (https://adafru.it/QkC). However, not every module is available

for every board due to size constraints or hardware limitations. How do you find out

what modules are available for your board?

There are two options for this. You can check the support matrix (https://adafru.it/

N2a), and search for your board by name. Or, you can use the REPL.

Plug in your board, connect to the serial console and enter the REPL. Type the

following command.

help("modules")

©Adafruit Industries Page 10 of 115

https://circuitpython.readthedocs.io/en/latest/shared-bindings/index.html#modules
https://circuitpython.readthedocs.io/en/latest/docs/library/index.html
https://circuitpython.readthedocs.io/en/latest/shared-bindings/support_matrix.html#

That's it! You now know two ways to find all of the modules built into CircuitPython for

your compatible microcontroller board.

CircuitPython Built-Ins

CircuitPython comes 'with the kitchen sink' - a lot of the things you know and love

about classic Python 3 (sometimes called CPython) already work. There are a few

things that don't but we'll try to keep this list updated as we add more capabilities!

Thing That Are Built In and Work

Flow Control

All the usual if , elif , else , for , while work just as expected.

Math

import math will give you a range of handy mathematical functions.

>>> dir(math)

['__name__', 'e', 'pi', 'sqrt', 'pow', 'exp', 'log', 'cos', 'sin',

'tan', 'acos', 'asin', 'atan', 'atan2', 'ceil', 'copysign', 'fabs',

'floor', 'fmod', 'frexp', 'ldexp', 'modf', 'isfinite', 'isinf',

'isnan', 'trunc', 'radians', 'degrees']

CircuitPython supports 30-bit wide floating point values so you can use int and fl

oat whenever you expect.

This is not an exhaustive list! It's simply some of the many features you can use.

©Adafruit Industries Page 11 of 115

Tuples, Lists, Arrays, and Dictionaries

You can organize data in () , [] , and {} including strings, objects, floats, etc.

Classes, Objects and Functions

We use objects and functions extensively in our libraries so check out one of our

many examples like this MCP9808 library (https://adafru.it/BfQ) for class examples.

Lambdas

Yep! You can create function-functions with lambda just the way you like em:

>>> g = lambda x: x**2

>>> g(8)

64

Random Numbers

To obtain random numbers:

import random

random.random() will give a floating point number from 0 to 1.0 .

random.randint(min, max) will give you an integer number between min and ma

x .

CircuitPython Digital In & Out

The first part of interfacing with hardware is being able to manage digital inputs and

outputs. With CircuitPython, it's super easy!

This example shows how to use both a digital input and output. You can use a switch i

nput with pullup resistor (built in) to control a digital output - the built in red LED.

Copy and paste the code into code.py using your favorite editor, and save the file to

run the demo.

©Adafruit Industries Page 12 of 115

https://github.com/adafruit/Adafruit_CircuitPython_MCP9808/blob/master/adafruit_mcp9808.py

"""CircuitPython Essentials Digital In Out example"""

import time
import board
from digitalio import DigitalInOut, Direction, Pull

LED setup.

led = DigitalInOut(board.LED)
For QT Py M0. QT Py M0 does not have a D13 LED, so you can connect an external

LED instead.

led = DigitalInOut(board.SCK)

led.direction = Direction.OUTPUT

For Gemma M0, Trinket M0, Metro M0 Express, ItsyBitsy M0 Express, Itsy M4

Express, QT Py M0

switch = DigitalInOut(board.D2)
switch = DigitalInOut(board.D5) # For Feather M0 Express, Feather M4 Express

switch = DigitalInOut(board.D7) # For Circuit Playground Express

switch.direction = Direction.INPUT
switch.pull = Pull.UP

while True:
 # We could also do "led.value = not switch.value"!

 if switch.value:
 led.value = False
 else:
 led.value = True

 time.sleep(0.01) # debounce delay

Note that we made the code a little less "Pythonic" than necessary. The if/else

block could be replaced with a simple led.value = not switch.value but we

wanted to make it super clear how to test the inputs. The interpreter will read the

digital input when it evaluates switch.value .

For Gemma M0, Trinket M0, Metro M0 Express, Metro M4 Express, ItsyBitsy M0

Express, ItsyBitsy M4 Express, no changes to the initial example are needed.

For Feather M0 Express and Feather M4 Express, comment out switch =

DigitalInOut(board.D2) (and/or switch = DigitalInOut(board.D7)

depending on what changes you already made), and uncomment switch =

DigitalInOut(board.D5) .

For Circuit Playground Express, you'll need to comment out switch =

DigitalInOut(board.D2) (and/or switch = DigitalInOut(board.D5)

depending on what changes you already made), and uncomment switch =

DigitalInOut(board.D7) .

Note: To "comment out" a line, put a # and a space before it. To "uncomment" a

line, remove the # + space from the beginning of the line.

©Adafruit Industries Page 13 of 115

For QT Py M0, you'll need to comment out led = DigitalInOut(board.LED) and

uncomment led = DigitalInOut(board.SCK) . The switch code remains the same.

To find the pin or pad suggested in the code, see the list below. For the boards that

require wiring, wire up a switch (also known as a tactile switch, button or push-

button), following the diagram for guidance. Press or slide the switch, and the

onboard red LED will turn on and off.

Note that on the M0/SAMD based CircuitPython boards, at least, you can also have

internal pulldowns with Pull.DOWN and if you want to turn off the pullup/pulldown just

assign switch.pull = None.

Find the pins!

The list below shows each board, explains the location of the Digital pin suggested

for use as input, and the location of the D13 LED.

Circuit Playground Express

We're going to use the switch, which is

pin D7, and is located between the

battery connector and the reset switch

on the board. The LED is labeled D13 and

is located next to the USB micro port.

To use D7, comment out the current pin

setup line, and uncomment the line

labeled for Circuit Playground Express.

See the details above!

QT Py M0 does not have a little red LED built in. Therefore, you must connect an

external LED for this example to work. See below for a wiring diagram illustrating

how to connect an external LED to a QT Py M0.

©Adafruit Industries Page 14 of 115

https://learn.adafruit.com//assets/51501
https://learn.adafruit.com//assets/51501

Trinket M0

D2 is connected to the blue wire, labeled

"2", and located between "3V" and "1" on

the board. The LED is labeled "13" and is

located next to the USB micro port.

Gemma M0

D2 is an alligator-clip-friendly pad

labeled both "D2" and "A1", shown

connected to the blue wire, and is next to

the USB micro port. The LED is located

next to the "GND" label on the board,

above the "On/Off" switch.

Use alligator clips to connect your switch

to your Gemma M0!

©Adafruit Industries Page 15 of 115

https://learn.adafruit.com//assets/51505
https://learn.adafruit.com//assets/51505
https://learn.adafruit.com//assets/51506
https://learn.adafruit.com//assets/51506

QT Py M0

D2 is labeled A2, shown connected to

the blue wire, and is near the USB port

between A1 and A3.

There is no little red LED built-in to the

QT Py M0. Therefore, you must connect

an external LED for this example to work.

To wire up an external LED:

LED + to QT Py SCK

LED - to 470Ω resistor

470Ω resistor to QT Py GND

The button and the LED share the same

GND pin.

To use the external LED, comment out

the current LED setup line, and

uncomment the line labeled for QT Py

M0. See the details above!

Feather M0 Express and Feather M4

Express

D5 is labeled "5" and connected to the

blue wire on the board. The LED is

labeled "#13" and is located next to the

USB micro port.

To use D5, comment out the current pin

setup line, and uncomment the line

labeled for Feather M0 Express. See the

details above!

•

•

•

©Adafruit Industries Page 16 of 115

https://learn.adafruit.com//assets/97805
https://learn.adafruit.com//assets/97805
https://learn.adafruit.com//assets/51502
https://learn.adafruit.com//assets/51502

ItsyBitsy M0 Express and ItsyBitsy M4

Express

D2 is labeled "2", located between the

"MISO" and "EN" labels, and is connected

to the blue wire on the board. The LED is

located next to the reset button between

the "3" and "4" labels on the board.

Metro M0 Express and Metro M4 Express

D2 is located near the top left corner, and

is connected to the blue wire. The LED is

labeled "L" and is located next to the USB

micro port.

Read the Docs

For a more in-depth look at what digitalio can do, check out the DigitalInOut

page in Read the Docs (https://adafru.it/C4c).

CircuitPython Analog In

This example shows you how you can read the analog voltage on the A1 pin on your

board.

Copy and paste the code into code.py using your favorite editor, and save the file to

run the demo.

"""CircuitPython Essentials Analog In example"""

import time
import board
from analogio import AnalogIn

analog_in = AnalogIn(board.A1)

©Adafruit Industries Page 17 of 115

https://learn.adafruit.com//assets/51503
https://learn.adafruit.com//assets/51503
https://learn.adafruit.com//assets/51504
https://learn.adafruit.com//assets/51504
https://circuitpython.readthedocs.io/en/latest/shared-bindings/digitalio/DigitalInOut.html
https://circuitpython.readthedocs.io/en/latest/shared-bindings/digitalio/DigitalInOut.html
https://circuitpython.readthedocs.io/en/latest/shared-bindings/digitalio/DigitalInOut.html

def get_voltage(pin):
 return (pin.value * 3.3) / 65536

while True:
 print((get_voltage(analog_in),))
 time.sleep(0.1)

Creating the analog input

analog1in = AnalogIn(board.A1)

Creates an object and connects the object to A1 as an analog input.

get_voltage Helper

get_voltage(pin) is our little helper program. By default, analog readings will

range from 0 (minimum) to 65535 (maximum). This helper will convert the 0-65535

reading from pin.value and convert it a 0-3.3V voltage reading.

Main Loop

The main loop is simple. It prints out the voltage as floating point values by calling

get_voltage on our analog object. Connect to the serial console to see the results.

Make sure you're running the latest CircuitPython! If you are not, you may run

into an error: "AttributeError: 'module' object has no attribute 'A1'". If you receive

this error, first make sure you're running the latest version of CircuitPython!

©Adafruit Industries Page 18 of 115

Changing It Up

By default the pins are floating so the voltages will vary. While connected to the serial

console, try touching a wire from A1 to the GND pin or 3Vo pin to see the voltage

change.

You can also add a potentiometer to control the voltage changes. From the

potentiometer to the board, connect the left pin to ground, the middle pin to A1, and

the right pin to 3V. If you're using Mu editor, you can see the changes as you rotate

the potentiometer on the plotter like in the image above! (Click the Plotter icon at the

top of the window to open the plotter.)

Wire it up

The list below shows wiring diagrams to help find the correct pins and wire up the

potentiometer, and provides more information about analog pins on your board!

When you turn the knob of the potentiometer, the wiper rotates left and right,

increasing or decreasing the resistance. This, in turn, changes the analog voltage

level that will be read by your board on A1.

©Adafruit Industries Page 19 of 115

Circuit Playground Express

A1 is located on the right side of the

board. There are multiple ground and 3V

pads (pins).

Your board has 7 analog pins that can be

used for this purpose. For the full list, see

the pinout page (https://adafru.it/AM9) on

the main guide.

Trinket M0

A1 is labeled as 2! It's located between

"1~" and "3V" on the same side of the

board as the little red LED. Ground is

located on the opposite side of the

board. 3V is located next to 2, on the

same end of the board as the reset

button.

You have 5 analog pins you can use. For

the full list, see the pinouts page (https://

adafru.it/AMd) on the main guide.

©Adafruit Industries Page 20 of 115

https://learn.adafruit.com//assets/51607
https://learn.adafruit.com//assets/51607
file:///home/adafruit-circuit-playground-express/pinouts
https://learn.adafruit.com//assets/51618
https://learn.adafruit.com//assets/51618
file:///home/adafruit-trinket-m0-circuitpython-arduino/pinouts

Gemma M0

A1 is located near the top of the board of

the board to the left side of the USB

Micro port. Ground is on the other side of

the USB port from A1. 3V is located to the

left side of the battery connector on the

bottom of the board.

Your board has 3 analog pins. For the full

list, see the pinout page (https://adafru.it/

AMa) on the main guide.

QT Py M0

A1, shown connected to the blue wire, is

near the USB port between A0 and A2.

Ground is on the opposite side of the QT

Py, near the USB port, between 3V and

5V. 3V is the next pin, between GND and

MO.

Your board has 10 analog pins. For the

full list, see the pinouts page (https://

adafru.it/OeY) in the main guide.

©Adafruit Industries Page 21 of 115

https://learn.adafruit.com//assets/51611
https://learn.adafruit.com//assets/51611
file:///home/adafruit-gemma-m0/pinouts
https://learn.adafruit.com//assets/97844
https://learn.adafruit.com//assets/97844
https://learn.adafruit.com/adafruit-qt-py/pinouts

Feather M0 Express and Feather M4

Express

A1 is located along the edge opposite the

battery connector. There are multiple

ground pins. 3V is located along the

same edge as A1, and is next to the reset

button.

Your board has 6 analog pins you can

use. For the full list, see the pinouts

page (https://adafru.it/AMc) on the main

guide.

ItsyBitsy M0 Express and ItsyBitsy M4

Express

A1 is located in the middle of the board,

near the "A" in "Adafruit". Ground is labled

"G" and is located next to "BAT", near the

USB Micro port. 3V is found on the

opposite side of the USB port from

Ground, next to RST.

You have 6 analog pins you can use. For

a full list, see the pinouts page (https://

adafru.it/BMg) on the main guide.

©Adafruit Industries Page 22 of 115

https://learn.adafruit.com//assets/51616
https://learn.adafruit.com//assets/51616
file:///home/adafruit-feather-m0-express-designed-for-circuit-python-circuitpython/adafruit2-pinouts
file:///home/adafruit-feather-m0-express-designed-for-circuit-python-circuitpython/adafruit2-pinouts
https://learn.adafruit.com//assets/51619
https://learn.adafruit.com//assets/51619
https://learn.adafruit.com/introducing-itsy-bitsy-m0/pinouts

Metro M0 Express and Metro M4 Express

A1 is located on the same side of the

board as the barrel jack. There are

multiple ground pins available. 3V is

labeled "3.3" and is located in the center

of the board on the same side as the

barrel jack (and as A1).

Your Metro M0 Express board has 6

analog pins you can use. For the full list,

see the pinouts page (https://adafru.it/

AMb) on the main guide.

Your Metro M4 Express board has 6

analog pins you can use. For the full list,

see the pinouts page (https://adafru.it/

B1O) on the main guide.

Reading Analog Pin Values

The get_voltage() helper used in the potentiometer example above reads the raw

analog pin value and converts it to a voltage level. You can, however, directly read an

analog pin value in your code by using pin.value . For example, to simply read the

raw analog pin value from the potentiometer, you would run the following code:

import time

import board

from analogio import AnalogIn

analog_in = AnalogIn(board.A1)

while True:

 print(analog_in.value)

 time.sleep(0.1)

This works with any analog pin or input. Use the <pin_name>.value to read the raw

value and utilise it in your code.

©Adafruit Industries Page 23 of 115

https://learn.adafruit.com//assets/52733
https://learn.adafruit.com//assets/52733
file:///home/adafruit-metro-m0-express-designed-for-circuitpython/pinouts
file:///home/adafruit-metro-m4-express-featuring-atsamd51/pinouts

CircuitPython Analog Out

This example shows you how you can set the DAC (true analog output) on pin A0.

Copy and paste the code into code.py using your favorite editor, and save the file.

"""CircuitPython Analog Out example"""

import board
from analogio import AnalogOut

analog_out = AnalogOut(board.A0)

while True:
 # Count up from 0 to 65535, with 64 increment

 # which ends up corresponding to the DAC's 10-bit range

 for i in range(0, 65535, 64):
 analog_out.value = i

Creating an analog output

analog_out = AnalogOut(A0)

Creates an object analog_out and connects the object to A0, the only DAC pin

available on both the M0 and the M4 boards. (The M4 has two, A0 and A1.)

Setting the analog output

The DAC on the SAMD21 is a 10-bit output, from 0-3.3V. So in theory you will have a

resolution of 0.0032 Volts per bit. To allow CircuitPython to be general-purpose

enough that it can be used with chips with anything from 8 to 16-bit DACs, the DAC

takes a 16-bit value and divides it down internally.

For example, writing 0 will be the same as setting it to 0 - 0 Volts out.

Writing 5000 is the same as setting it to 5000 / 64 = 78, and 78 / 1024 * 3.3V = 0.25V

output.

Writing 65535 is the same as 1023 which is the top range and you'll get 3.3V output

A0 is the only true analog output on the M0 boards. No other pins do true analog

output!

©Adafruit Industries Page 24 of 115

Main Loop

The main loop is fairly simple, it goes through the entire range of the DAC, from 0 to

65535, but increments 64 at a time so it ends up clicking up one bit for each of the

10-bits of range available.

CircuitPython is not terribly fast, so at the fastest update loop you'll get 4 Hz. The DAC

isn't good for audio outputs as-is.

Express boards like the Circuit Playground Express, Metro M0 Express, ItsyBitsy M0

Express, ItsyBitsy M4 Express, Metro M4 Express, Feather M4 Express, or Feather M0

Express have more code space and can perform audio playback capabilities via the

DAC. QT Py M0, Gemma M0 and Trinket M0 cannot!

Check out the Audio Out section of this guide (https://adafru.it/BRj) for examples!

Find the pin

Use the diagrams below to find the A0 pin marked with a magenta arrow!

Circuit Playground Express

A0 is located between VOUT and A1 near

the battery port.

©Adafruit Industries Page 25 of 115

https://learn.adafruit.com/circuitpython-essentials/circuitpython-audio-out
https://learn.adafruit.com//assets/51696
https://learn.adafruit.com//assets/51696

Trinket M0

A0 is labeled "1~" on Trinket! A0 is

located between "0" and "2" towards the

middle of the board on the same side as

the red LED.

Gemma M0

A0 is located in the middle of the right

side of the board next to the On/Off

switch.

QT Py M0

A0 is located next to the USB port, by the

"QT" label on the board silk.

©Adafruit Industries Page 26 of 115

https://learn.adafruit.com//assets/51697
https://learn.adafruit.com//assets/51697
https://learn.adafruit.com//assets/51698
https://learn.adafruit.com//assets/51698
https://learn.adafruit.com//assets/97800
https://learn.adafruit.com//assets/97800

Feather M0 Express

A0 is located between GND and A1 on

the opposite side of the board from the

battery connector, towards the end with

the Reset button.

Feather M4 Express

A0 is located between GND and A1 on

the opposite side of the board from the

battery connector, towards the end with

the Reset button, and the pin pad has left

and right white parenthesis markings

around it

ItsyBitsy M0 Express

A0 is located between VHI and A1, near

the "A" in "Adafruit", and the pin pad has

left and right white parenthesis markings

around it.

©Adafruit Industries Page 27 of 115

https://learn.adafruit.com//assets/51699
https://learn.adafruit.com//assets/51699
https://learn.adafruit.com//assets/57531
https://learn.adafruit.com//assets/57531
https://learn.adafruit.com//assets/51700
https://learn.adafruit.com//assets/51700

ItsyBitsy M4 Express

A0 is located between VHI and A1, and

the pin pad has left and right white

parenthesis markings around it.

Metro M0 Express

A0 is between VIN and A1, and is located

along the same side of the board as the

barrel jack adapter towards the middle of

the headers found on that side of the

board.

Metro M4 Express

A0 is between VIN and A1, and is located

along the same side of the board as the

barrel jack adapter towards the middle of

the headers found on that side of the

board.

On the Metro M4 Express, there are TWO

true analog outputs: A0 and A1.

©Adafruit Industries Page 28 of 115

https://learn.adafruit.com//assets/57532
https://learn.adafruit.com//assets/57532
https://learn.adafruit.com//assets/51701
https://learn.adafruit.com//assets/51701
https://learn.adafruit.com//assets/53100
https://learn.adafruit.com//assets/53100

CircuitPython Audio Out

CircuitPython comes with audioio , which provides built-in audio output support. You

can play generated tones. You can also play, pause and resume wave files. You can

have 3V-peak-to-peak analog output or I2S digital output. In this page we will show

using analog output.

This is great for all kinds of projects that require sound, like a tone piano or anything

where you'd like to add audio effects!

The first example will show you how to generate a tone and play it using a button.

The second example will show you how to play, pause, and resume a wave file using

a button to resume. Both will play the audio through an audio jack. The default

volume on both of these examples is painfully high through headphones. So, we've

added a potentiometer and included some code in the tone generation example to

control volume.

In our code, we'll use pin A0 for our audio output, as this is the only DAC pin available

on every Express board. The M0 Express boards have audio output on A0. The M4

Express boards have two audio output pins, A0 and A1, however we'll be using only

A0 in this guide.

Play a Tone

Copy and paste the following code into code.py using your favorite editor, and save

the file.

"""CircuitPython Essentials Audio Out tone example"""

import time
import array
import math
import board
import digitalio
from audiocore import RawSample

try:
 from audioio import AudioOut
except ImportError:
 try:
 from audiopwmio import PWMAudioOut as AudioOut
 except ImportError:
 pass # not always supported by every board!

QT Py M0, Hallowing M0, Trinket M0 and Gemma M0 do not support audioio! You

must use an M0 Express, M4 Express, nRF52840 etc board for this.

©Adafruit Industries Page 29 of 115

button = digitalio.DigitalInOut(board.A1)
button.switch_to_input(pull=digitalio.Pull.UP)

tone_volume = 0.1 # Increase this to increase the volume of the tone.
frequency = 440 # Set this to the Hz of the tone you want to generate.
length = 8000 // frequency
sine_wave = array.array("H", [0] * length)
for i in range(length):
 sine_wave[i] = int((1 + math.sin(math.pi * 2 * i / length)) * tone_volume * (2
** 15 - 1))

audio = AudioOut(board.A0)
sine_wave_sample = RawSample(sine_wave)

while True:
 if not button.value:
 audio.play(sine_wave_sample, loop=True)
 time.sleep(1)

 audio.stop()

First we create the button object, assign it to pin A1 , and set it as an input with a pull-

up. Even though the button switch involves digitalio , we're using an A-pin so that

the same setup code will work across all the boards.

Since the default volume was incredibly high, we included a tone_volume variable in

the sine wave code. You can use the code to control the volume by increasing or

decreasing this number to increase or decrease the volume. You can also control

volume with the potentiometer by rotating the knob.

To set the frequency of the generated tone, change the number assigned to the fre

quency variable to the Hz of the tone you'd like to generate.

Then, we generate one period of a sine wave with the math.sin function, and

assign it to sine_wave .

Next, we create the audio object, and assign it to pin A0 .

We create a sample of the sine wave by using RawSample and providing the sine_w

ave we created.

Inside our loop, we check to see if the button is pressed. The button has two states T

rue and False . The button.value defaults to the True state when not pressed.

So, to check if it has been pressed, we're looking for the False state. So, we check

to see if not button.value which is the equivalent of not True , or False .

©Adafruit Industries Page 30 of 115

Once the button is pressed, we play the sample we created and we loop it. The ti

me.sleep(1) tells it to loop (play) for 1 second. Then we stop it after 1 second is up.

You can increase or decrease the length of time it plays by increasing or decreasing

the number of seconds provided to time.sleep() . Try changing it from 1 to 0.5 .

Now try changing it to 2 . You can change it to whatever works for you!

That's it!

Play a Wave File

You can use any supported wave file you like. CircuitPython supports mono or stereo,

at 22 KHz sample rate (or less) and 16-bit WAV format. The M0 boards support ONLY

MONO. The reason for mono is that there's only one analog output on those boards!

The M4 boards support stereo as they have two outputs. The 22 KHz or less because

the circuitpython can't handle more data than that (and also it will not sound much

better) and the DAC output is 10-bit so anything over 16-bit will just take up room

without better quality.

Since the WAV file must fit on the CircuitPython file system, it must be under 2 MB.

We have a detailed guide on how to generate WAV files here (https://adafru.it/s8f).

We've included the one we used here. Download it and copy it to your board.

StreetChicken.wav

https://adafru.it/BQF

We're going to play the wave file for 6 seconds, pause it, wait for a button to be

pressed, and then resume the file to play through to the end. Then it loops back to

the beginning and starts again! Let's take a look.

Copy and paste the following code into code.py using your favorite editor, and save

the file.

"""CircuitPython Essentials Audio Out WAV example"""

import time
import board
import digitalio
from audiocore import WaveFile

try:

CircuitPython does not support OGG. Just WAV and MP3!

©Adafruit Industries Page 31 of 115

https://learn.adafruit.com/adafruit-wave-shield-audio-shield-for-arduino/convert-files
https://cdn-learn.adafruit.com/assets/assets/000/057/463/original/StreetChicken.wav?1531255658

 from audioio import AudioOut
except ImportError:
 try:
 from audiopwmio import PWMAudioOut as AudioOut
 except ImportError:
 pass # not always supported by every board!

button = digitalio.DigitalInOut(board.A1)
button.switch_to_input(pull=digitalio.Pull.UP)

wave_file = open("StreetChicken.wav", "rb")
wave = WaveFile(wave_file)
audio = AudioOut(board.A0)

while True:
 audio.play(wave)

 # This allows you to do other things while the audio plays!

 t = time.monotonic()
 while time.monotonic() - t < 6:
 pass

 audio.pause()

 print("Waiting for button press to continue!")
 while button.value:
 pass
 audio.resume()

 while audio.playing:
 pass
 print("Done!")

First we create the button object, assign it to pin A1 , and set it as an input with a pull-

up.

Next we then open the file, "StreetChicken.wav" as a readable binary and store

the file object in wave_file which is what we use to actually read audio from: wave

_file = open("StreetChicken.wav", "rb") .

Now we will ask the audio playback system to load the wave data from the file wave

= audiocore.WaveFile(wave_file) and finally request that the audio is played

through the A0 analog output pin audio = audioio.AudioOut(board.A0) .

The audio file is now ready to go, and can be played at any time with audio.play(w

ave) !

Inside our loop, we start by playing the file.

Next we have the block that tells the code to wait 6 seconds before pausing the file.

We chose to go with using time.monotonic() because it's non-blocking which

means you can do other things while the file is playing, like control servos or

NeoPixels! At any given point in time, time.monotonic() is equal to the number

seconds since your board was last power-cycled. (The soft-reboot that occurs with the

auto-reload when you save changes to your CircuitPython code, or enter and exit the

©Adafruit Industries Page 32 of 115

REPL, does not start it over.) When it is called, it returns a number with a decimal.

When you assign time.monotonic() to a variable, that variable is equal to the

number of seconds that time.monotonic() was equal to at the moment the variable

was assigned. You can then call it again and subtract the variable from time.monoto

nic() to get the amount of time that has passed. For more details, check out this

example (https://adafru.it/BlT).

So, we assign t = time.monotonic() to get a starting point. Then we say pass , or

"do nothing" until the difference between t and time.monotonic() is greater than

6 seconds. In other words, continue playing until 6 seconds passes. Remember, you

can add in other code here to do other things while you're playing audio for 6

seconds.

Then we pause the audio and print to the serial console, "Waiting for button

press to continue!"

Now we're going to wait for a button press in the same way we did for playing the

generated tone. We're saying while button.value , or while the button is returning

True , pass . Once the button is pressed, it returns False , and this tells the code to

continue.

Once the button is pressed, we resume playing the file. We tell it to finish playing

saying while audio.playing: pass .

Finally, we print to the serial console, "Done!"

You can do this with any supported wave file, and you can include all kinds of things

in your project while the file is playing. Give it a try!

Wire It Up

Along with your microcontroller board, we're going to be using:

©Adafruit Industries Page 33 of 115

https://learn.adafruit.com/hacking-ikea-lamps-with-circuit-playground-express/passing-time#time-dot-monotonic-example
https://learn.adafruit.com/hacking-ikea-lamps-with-circuit-playground-express/passing-time#time-dot-monotonic-example

Breadboard-Friendly 3.5mm Stereo

Headphone Jack

Pipe audio in or out of your project with

this very handy breadboard-friendly audio

jack. It's a stereo jack with disconnect-

switches on Left and Right channels as

well as a center...

https://www.adafruit.com/product/1699

Tactile Switch Buttons (12mm square,

6mm tall) x 10 pack

Medium-sized clicky momentary switches

are standard input "buttons" on electronic

projects. These work best in a PCB but

https://www.adafruit.com/product/1119

Panel Mount 10K potentiometer

(Breadboard Friendly)

This potentiometer is a two-in-one, good

in a breadboard or with a panel. It's a

fairly standard linear taper 10K ohm

potentiometer, with a grippy shaft. It's

smooth and easy...

https://www.adafruit.com/product/562

100uF 16V Electrolytic Capacitors - Pack

of 10

We like capacitors so much we made

a kids' show about them. ...

https://www.adafruit.com/product/2193

©Adafruit Industries Page 34 of 115

https://www.adafruit.com/product/1699
https://www.adafruit.com/product/1699
https://www.adafruit.com/product/1699
https://www.adafruit.com/product/1119
https://www.adafruit.com/product/1119
https://www.adafruit.com/product/1119
https://www.adafruit.com/product/562
https://www.adafruit.com/product/562
https://www.adafruit.com/product/562
https://www.adafruit.com/product/2193
https://www.adafruit.com/product/2193
https://www.adafruit.com/product/2193

Full sized breadboard

This is a 'full-size' breadboard, 830 tie

points. Good for small and medium

projects. It's 2.2" x 7" (5.5 cm x 17 cm) with

a standard double-strip in the middle...

https://www.adafruit.com/product/239

Premium Male/Male Jumper Wires - 20 x

6" (150mm)

These Male/Male Jumper Wires are handy

for making wire harnesses or jumpering

between headers on PCB's. These

premium jumper wires are 6" (150mm)

long and come in a...

https://www.adafruit.com/product/1957

And to make it easier to wire up the Circuit Playground Express:

Small Alligator Clip to Male Jumper Wire

Bundle - 6 Pieces

When working with unusual non-header-

friendly surfaces, these handy cables will

be your best friends! No longer will you

have long, cumbersome strands of

alligator clips. These...

https://www.adafruit.com/product/3448

Button switches with four pins are really two pairs of pins. When wiring up a button

switch with four pins, the easiest way to verify that you're wiring up the correct pins is

to wire up opposite corners of the button switch. Then there's no chance that you'll

accidentally wire up the same pin twice.

©Adafruit Industries Page 35 of 115

https://www.adafruit.com/product/239
https://www.adafruit.com/product/239
https://www.adafruit.com/product/1957
https://www.adafruit.com/product/1957
https://www.adafruit.com/product/1957
https://www.adafruit.com/product/3448
https://www.adafruit.com/product/3448
https://www.adafruit.com/product/3448

Here are the steps you're going to follow to wire up these components:

Connect the ground pin on your board to a ground rail on the breadboard

because you'll be connecting all three components to ground.

Connect one pin on the button switch to pin A1 on your board, and the opposite

pin on the button switch to the ground rail on the breadboard.

Connect the left and right pin on the audio jack to each other.

Connect the center pin on the audio jack to the ground rail on the breadboard.

Connect the left pin to the negative side of a 100mF capacitor.

Connect the positive side of the capacitor to the center pin on the

potentiometer.

Connect the right pin on the potentiometer to pin A0 on your board.

Connect the left pin of the potentiometer to the ground rail on the breadboard.

The list below shows wiring diagrams to help with finding the correct pins and wiring

up the different components. The ground wires are black. The wire for the button

switch is yellow. The wires involved with audio are blue.

•

•

•

•

•

•

•

•

©Adafruit Industries Page 36 of 115

Wiring is the same for the M4 versions of

the boards as it is for the M0 versions.

Follow the same image for both.

Use a breadboard to make your wiring

neat and tidy!

Circuit Playground Express is wired

electrically the same as the ItsyBitsy/

Feather/Metro above but we use alligator

clip to jumper wires instead of plain

jumpers

©Adafruit Industries Page 37 of 115

https://learn.adafruit.com//assets/57479
https://learn.adafruit.com//assets/57479
https://learn.adafruit.com//assets/57576
https://learn.adafruit.com//assets/57576
https://learn.adafruit.com//assets/57577
https://learn.adafruit.com//assets/57577
https://learn.adafruit.com//assets/57486
https://learn.adafruit.com//assets/57486

CircuitPython MP3 Audio

Compressed audio can be a nice alternative to uncompressed WAV files - especially

when you have a small filesystem like that on many CircuitPython boards: those WAV

files get pretty big fast! Thanks to the expiration of the MP3 patent pool, we can now

include MP3 decoding as a core CircuitPython capability and you can even play

multiple MP3s at a time!

CircuitPython supports any MP3 file you like. We've found that mono and stereo files

from 32kbit/s to 128kbit/s work, with sample rates from 16kHz to 44.1kHz. The DAC

output on the SAMD51 M4 is just 12-bit so there's not much point in using higher

bitrates.

We're going to play one short mp3 file, wait for a button to be pressed, and then play

a second short mp3 file. Use the same wiring as the other audio examples (https://

adafru.it/BRj).

Because creating an MP3Decoder object takes a lot of memory, it's best to do this

just once when your program starts, and then update the .file property of the MP3

Decoder when you want to play a different file. Otherwise, you may encounter the

dreaded MemoryError .

Download these two mp3 files and copy them to your board:

begins.mp3

https://adafru.it/MfV

xfiles.mp3

https://adafru.it/MfW

Copy and paste the following code into code.py using your favorite editor, and save

the file:

"""CircuitPython Essentials Audio Out MP3 Example"""

import board
import digitalio

MP3 playback is supported on most/many SAMD51 and nRF boards. It is not

supported on any M0 boards. Check whether your board is supported by going

to its download page on circuitpython.org and looking for "audiomp3" in the list

of "built in modules available".

©Adafruit Industries Page 38 of 115

https://learn.adafruit.com/circuitpython-essentials/circuitpython-audio-out
https://cdn-learn.adafruit.com/assets/assets/000/093/257/original/begins.mp3?1595002296
https://cdn-learn.adafruit.com/assets/assets/000/093/258/original/xfiles.mp3?1595002302

from audiomp3 import MP3Decoder

try:
 from audioio import AudioOut
except ImportError:
 try:
 from audiopwmio import PWMAudioOut as AudioOut
 except ImportError:
 pass # not always supported by every board!

button = digitalio.DigitalInOut(board.A1)
button.switch_to_input(pull=digitalio.Pull.UP)

The listed mp3files will be played in order

mp3files = ["begins.mp3", "xfiles.mp3"]

You have to specify some mp3 file when creating the decoder

mp3 = open(mp3files[0], "rb")
decoder = MP3Decoder(mp3)
audio = AudioOut(board.A0)

while True:
 for filename in mp3files:
 # Updating the .file property of the existing decoder

 # helps avoid running out of memory (MemoryError exception)

 decoder.file = open(filename, "rb")
 audio.play(decoder)

 print("playing", filename)

 # This allows you to do other things while the audio plays!

 while audio.playing:
 pass

 print("Waiting for button press to continue!")
 while button.value:
 pass

CircuitPython PWM

Your board has pwmio support, which means you can PWM LEDs, control servos,

beep piezos, and manage "pulse train" type devices like DHT22 and Infrared.

Nearly every pin has PWM support! For example, all ATSAMD21 board have an A0 pin

which is 'true' analog out and does not have PWM support.

PWM with Fixed Frequency

This example will show you how to use PWM to fade the little red LED on your board.

The QT Py M0 does not have a little red LED. Therefore, you must connect an

external LED and edit this example for it to work. Follow the wiring diagram and

steps below to run this example on QT Py M0.

©Adafruit Industries Page 39 of 115

The following illustrates how to connect an external LED to a QT Py M0.

LED + to QT Py SCK

LED - to 470Ω resistor

470Ω resistor to QT Py GND

Copy and paste the code into code.py using your favorite editor, and save the file.

"""CircuitPython Essentials: PWM with Fixed Frequency example."""

import time
import board
import pwmio

LED setup for most CircuitPython boards:

led = pwmio.PWMOut(board.LED, frequency=5000, duty_cycle=0)
LED setup for QT Py M0:

led = pwmio.PWMOut(board.SCK, frequency=5000, duty_cycle=0)

while True:
 for i in range(100):
 # PWM LED up and down

 if i < 50:
 led.duty_cycle = int(i * 2 * 65535 / 100) # Up
 else:
 led.duty_cycle = 65535 - int((i - 50) * 2 * 65535 / 100) # Down
 time.sleep(0.01)

To use with QT Py M0, you must comment out led = pwmio.PWMOut(board.LED,

frequency=5000, duty_cycle=0) and uncomment led =

pwmio.PWMOut(board.SCK, frequency=5000, duty_cycle=0) . Your setup lines

should look like this for the example to work with QT Py M0:

LED setup for most CircuitPython boards:

led = pwmio.PWMOut(board.LED, frequency=5000, duty_cycle=0)

LED setup for QT Py M0:

led = pwmio.PWMOut(board.SCK, frequency=5000, duty_cycle=0)

•

•

•

Remember: To "comment out" a line, put a # and a space before it. To

"uncomment" a line, remove the # + space from the beginning of the line.

©Adafruit Industries Page 40 of 115

https://learn.adafruit.com//assets/97845
https://learn.adafruit.com//assets/97845

Create a PWM Output

led = pwmio.PWMOut(board.LED, frequency=5000, duty_cycle=0)

Since we're using the onboard LED, we'll call the object led , use pwmio.PWMOut to

create the output and pass in the D13 LED pin to use.

Main Loop

The main loop uses range() to cycle through the loop. When the range is below 50,

it PWMs the LED brightness up, and when the range is above 50, it PWMs the

brightness down. This is how it fades the LED brighter and dimmer!

The time.sleep() is needed to allow the PWM process to occur over a period of

time. Otherwise it happens too quickly for you to see!

PWM Output with Variable Frequency

Fixed frequency outputs are great for pulsing LEDs or controlling servos. But if you

want to make some beeps with a piezo, you'll need to vary the frequency.

The following example uses pwmio to make a series of tones on a piezo.

To use with any of the M0 boards, no changes to the following code are needed.

To use with the Metro M4 Express, ItsyBitsy M4 Express or the Feather M4 Express,

you must comment out the piezo = pwmio.PWMOut(board.A2, duty_cycle=0,

frequency=440, variable_frequency=True) line and uncomment the piezo =

pwmio.PWMOut(board.A1, duty_cycle=0, frequency=440,

variable_frequency=True) line. A2 is not a supported PWM pin on the M4 boards!

"""CircuitPython Essentials PWM with variable frequency piezo example"""

import time
import board
import pwmio

For the M0 boards:

piezo = pwmio.PWMOut(board.A2, duty_cycle=0, frequency=440, variable_frequency=True)

Remember: To "comment out" a line, put a # and a space before it. To

"uncomment" a line, remove the # + space from the beginning of the line.

©Adafruit Industries Page 41 of 115

For the M4 boards:

piezo = pwmio.PWMOut(board.A1, duty_cycle=0, frequency=440,

variable_frequency=True)

while True:
 for f in (262, 294, 330, 349, 392, 440, 494, 523):
 piezo.frequency = f
 piezo.duty_cycle = 65535 // 2 # On 50%
 time.sleep(0.25) # On for 1/4 second

 piezo.duty_cycle = 0 # Off
 time.sleep(0.05) # Pause between notes

 time.sleep(0.5)

If you have simpleio library loaded into your /lib folder on your board, we have a

nice little helper that makes a tone for you on a piezo with a single command.

To use with any of the M0 boards, no changes to the following code are needed.

To use with the Metro M4 Express, ItsyBitsy M4 Express or the Feather M4 Express,

you must comment out the simpleio.tone(board.A2, f, 0.25) line and

uncomment the simpleio.tone(board.A1, f, 0.25) line. A2 is not a supported

PWM pin on the M4 boards!

"""CircuitPython Essentials PWM piezo simpleio example"""

import time
import board
import simpleio

while True:
 for f in (262, 294, 330, 349, 392, 440, 494, 523):
 # For the M0 boards:

 simpleio.tone(board.A2, f, 0.25) # on for 1/4 second

 # For the M4 boards:

 # simpleio.tone(board.A1, f, 0.25) # on for 1/4 second

 time.sleep(0.05) # pause between notes

 time.sleep(0.5)

As you can see, it's much simpler!

Wire it up

Use the diagrams below to help you wire up your piezo. Attach one leg of the piezo

to pin A2 on the M0 boards or A1 on the M4 boards, and the other leg to ground. It

doesn't matter which leg is connected to which pin. They're interchangeable!

©Adafruit Industries Page 42 of 115

Circuit Playground Express

Use alligator clips to attach A2 and any

one of the GND to different legs of the

piezo.

CPX has PWM on the following pins: A1,

A2, A3, A6, RX, LIGHT, A8,

TEMPERATURE, A9, BUTTON_B, D5,

SLIDE_SWITCH, D7, D13, REMOTEIN,

IR_RX, REMOTEOUT, IR_TX,

IR_PROXIMITY, MICROPHONE_CLOCK,

MICROPHONE_DATA,

ACCELEROMETER_INTERRUPT,

ACCELEROMETER_SDA,

ACCELEROMETER_SCL,

SPEAKER_ENABLE.

There is NO PWM on: A0, SPEAKER, A4,

SCL, A5, SDA, A7, TX, BUTTON_A, D4,

NEOPIXEL, D8, SCK, MOSI, MISO,

FLASH_CS.

©Adafruit Industries Page 43 of 115

https://learn.adafruit.com//assets/51861
https://learn.adafruit.com//assets/51861

Trinket M0

Note: A2 on Trinket is also labeled Digital

"0"!

Use jumper wires to connect GND and

D0 to different legs of the piezo.

Trinket has PWM available on the

following pins: D0, A2, SDA, D2, A1, SCL,

MISO, D4, A4, TX, MOSI, D3, A3, RX, SCK,

D13, APA102_MOSI, APA102_SCK.

There is NO PWM on: A0, D1.

Gemma M0

Use alligator clips to attach A2 and GND

to different legs on the piezo.

Gemma has PWM available on the

following pins: A1, D2, RX, SCL, A2, D0,

TX, SDA, L, D13, APA102_MOSI,

APA102_SCK.

There is NO PWM on: A0, D1.

©Adafruit Industries Page 44 of 115

https://learn.adafruit.com//assets/51864
https://learn.adafruit.com//assets/51864
https://learn.adafruit.com//assets/51866
https://learn.adafruit.com//assets/51866

QT Py M0

Use jumper wires to attach A2 and GND

to different legs of the piezo.

The QT Py M0 has PWM on the following

pins: A2, A3, A6, A7, A8, A9, A10, D2, D3,

D4, D5, D6, D7, D8, D9, D10, SCK, MISO,

MOSI, NEOPIXEL, RX, TX, SCL, SDA.

There is NO A0, A1, D0, D1,

NEOPIXEL_POWER.

Feather M0 Express

Use jumper wires to attach A2 and one of

the two GND to different legs of the

piezo.

Feather M0 Express has PWM on the

following pins: A2, A3, A4, SCK, MOSI,

MISO, D0, RX, D1, TX, SDA, SCL, D5, D6,

D9, D10, D11, D12, D13, NEOPIXEL.

There is NO PWM on: A0, A1, A5.

©Adafruit Industries Page 45 of 115

https://learn.adafruit.com//assets/97846
https://learn.adafruit.com//assets/97846
https://learn.adafruit.com//assets/51868
https://learn.adafruit.com//assets/51868

Feather M4 Express

Use jumper wires to attach A1 and one of

the two GND to different legs of the

piezo.

To use A1, comment out the current pin

setup line, and uncomment the line

labeled for the M4 boards. See the

details above!

Feather M4 Express has PWM on the

following pins: A1, A3, SCK, D0, RX, D1,

TX, SDA, SCL, D4, D5, D6, D9, D10, D11,

D12, D13.

There is NO PWM on: A0, A2, A4, A5,

MOSI, MISO.

ItsyBitsy M0 Express

Use jumper wires to attach A2 and G to

different legs of the piezo.

ItsyBitsy M0 Express has PWM on the

following pins: D0, RX, D1, TX, D2, D3,

D4, D5, D6, D7, D8, D9, D10, D11, D12,

D13, L, A2, A3, A4, MOSI, MISO, SCK,

SCL, SDA, APA102_MOSI, APA102_SCK.

There is NO PWM on: A0, A1, A5.

©Adafruit Industries Page 46 of 115

https://learn.adafruit.com//assets/57590
https://learn.adafruit.com//assets/57590
https://learn.adafruit.com//assets/51870
https://learn.adafruit.com//assets/51870

ItsyBitsy M4 Express

Use jumper wires to attach A1 and G to

different legs of the piezo.

To use A1, comment out the current pin

setup line, and uncomment the line

labeled for the M4 boards. See the

details above!

ItsyBitsy M4 Express has PWM on the

following pins: A1, D0, RX, D1, TX, D2, D4,

D5, D7, D9, D10, D11, D12, D13, SDA, SCL.

There is NO PWM on: A2, A3, A4, A5, D3,

SCK, MOSI, MISO.

Metro M0 Express

Use jumper wires to connect A2 and any

one of the GND to different legs on the

piezo.

Metro M0 Express has PWM on the

following pins: A2, A3, A4, D0, RX, D1,

TX, D2, D3, D4, D5, D6, D7, D8, D9, D10,

D11, D12, D13, SDA, SCL, NEOPIXEL, SCK,

MOSI, MISO.

There is NO PWM on: A0, A1, A5,

FLASH_CS.

©Adafruit Industries Page 47 of 115

https://learn.adafruit.com//assets/57591
https://learn.adafruit.com//assets/57591
https://learn.adafruit.com//assets/51871
https://learn.adafruit.com//assets/51871

Metro M4 Express

Use jumper wires to connect A1 and any

one of the GND to different legs on the

piezo.

To use A1, comment out the current pin

setup line, and uncomment the line

labeled for the M4 boards. See the

details above!

Metro M4 Express has PWM on: A1, A5,

D0, RX, D1, TX, D2, D3, D4, D5, D6, D7,

D8, D9, D10, D11, D12, D13, SDA, SCK,

MOSI, MISO

There is No PWM on: A0, A2, A3, A4,

SCL, AREF, NEOPIXEL, LED_RX, LED_TX.

Where's My PWM?

Want to check to see which pins have PWM yourself? We've written this handy script!

It attempts to setup PWM on every pin available, and lets you know which ones work

and which ones don't. Check it out!

"""CircuitPython Essentials PWM pin identifying script"""

import board
import pwmio

for pin_name in dir(board):
 pin = getattr(board, pin_name)
 try:
 p = pwmio.PWMOut(pin)
 p.deinit()

 print("PWM on:", pin_name) # Prints the valid, PWM-capable pins!
 except ValueError: # This is the error returned when the pin is invalid.
 print("No PWM on:", pin_name) # Prints the invalid pins.
 except RuntimeError: # Timer conflict error.
 print("Timers in use:", pin_name) # Prints the timer conflict pins.
 except TypeError: # Error returned when checking a non-pin object in
dir(board).

 pass # Passes over non-pin objects in dir(board).

©Adafruit Industries Page 48 of 115

https://learn.adafruit.com//assets/53102
https://learn.adafruit.com//assets/53102

CircuitPython Servo

In order to use servos, we take advantage of pwmio . Now, in theory, you could just

use the raw pwmio calls to set the frequency to 50 Hz and then set the pulse widths.

But we would rather make it a little more elegant and easy!

So, instead we will use adafruit_motor which manages servos for you quite nicely!

adafruit_motor is a library so be sure to grab it from the library bundle if you have

not yet (https://adafru.it/zdx)! If you need help installing the library, check out the Circ

uitPython Libraries page (https://adafru.it/ABU).

Servos come in two types:

A standard hobby servo - the horn moves 180 degrees (90 degrees in each

direction from zero degrees).

A continuous servo - the horn moves in full rotation like a DC motor. Instead of

an angle specified, you set a throttle value with 1.0 being full forward, 0.5 being

half forward, 0 being stopped, and -1 being full reverse, with other values

between.

Servo Wiring

The connections for a servo are the same for standard servos and continuous rotation

servos.

Connect the servo's brown or black ground wire to ground on the CircuitPython

board.

Connect the servo's red power wire to 5V power, USB power is good for a servo or

two. For more than that, you'll need an external battery pack. Do not use 3.3V for

powering a servo!

Connect the servo's yellow or white signal wire to the control/data pin, in this case A1

or A2 but you can use any PWM-capable pin.

•

•

Servos will only work on PWM-capable pins! Check your board details to verify

which pins have PWM outputs.

©Adafruit Industries Page 49 of 115

https://github.com/adafruit/Adafruit_CircuitPython_Bundle
https://github.com/adafruit/Adafruit_CircuitPython_Bundle
file:///home/welcome-to-circuitpython/circuitpython-libraries
file:///home/welcome-to-circuitpython/circuitpython-libraries

For example, to wire a servo to Trinket,

connect the ground wire to GND, the

power wire to USB, and the signal wire to

0.

Remember, A2 on Trinket is labeled "0".

For Gemma, use jumper wire alligator

clips to connect the ground wire to GND,

the power wire to VOUT, and the signal

wire to A2.

For Circuit Playground Express and

Circuit Playground Bluefruit, use jumper

wire alligator clips to connect the ground

wire to GND, the power wire to VOUT,

and the signal wire to A2.

©Adafruit Industries Page 50 of 115

https://learn.adafruit.com//assets/51927
https://learn.adafruit.com//assets/51927
https://learn.adafruit.com//assets/51928
https://learn.adafruit.com//assets/51928
https://learn.adafruit.com//assets/51991
https://learn.adafruit.com//assets/51991

For QT Py M0, connect the ground wire

to GND, the power wire to 5V, and the

signal wire to A2.

For boards like Feather M0 Express,

ItsyBitsy M0 Express and Metro M0

Express, connect the ground wire to any

GND, the power wire to USB or 5V, and

the signal wire to A2.

For the Metro M4 Express, ItsyBitsy M4

Express and the Feather M4 Express,

connect the ground wire to any G or

GND, the power wire to USB or 5V, and

the signal wire to A2.

Standard Servo Code

Here's an example that will sweep a servo connected to pin A2 from 0 degrees to 180

degrees (-90 to 90 degrees) and back:

"""CircuitPython Essentials Servo standard servo example"""

import time
import board
import pwmio
from adafruit_motor import servo

©Adafruit Industries Page 51 of 115

https://learn.adafruit.com//assets/97847
https://learn.adafruit.com//assets/97847
https://learn.adafruit.com//assets/51929
https://learn.adafruit.com//assets/51929
https://learn.adafruit.com//assets/104844
https://learn.adafruit.com//assets/104844

create a PWMOut object on Pin A2.

pwm = pwmio.PWMOut(board.A2, duty_cycle=2 ** 15, frequency=50)

Create a servo object, my_servo.

my_servo = servo.Servo(pwm)

while True:
 for angle in range(0, 180, 5): # 0 - 180 degrees, 5 degrees at a time.
 my_servo.angle = angle
 time.sleep(0.05)

 for angle in range(180, 0, -5): # 180 - 0 degrees, 5 degrees at a time.
 my_servo.angle = angle
 time.sleep(0.05)

Continuous Servo Code

There are two differences with Continuous Servos vs. Standard Servos:

The servo object is created like my_servo = servo.ContinuousServo(pwm)

instead of my_servo = servo.Servo(pwm)

Instead of using myservo.angle , you use my_servo.throttle using a

throttle value from 1.0 (full on) to 0.0 (stopped) to -1.0 (full reverse). Any number

between would be a partial speed forward (positive) or reverse (negative). This

is very similar to standard DC motor control with the adafruit_motor library.

This example runs full forward for 2 seconds, stops for 2 seconds, runs full reverse for

2 seconds, then stops for 4 seconds.

"""CircuitPython Essentials Servo continuous rotation servo example"""

import time
import board
import pwmio
from adafruit_motor import servo

create a PWMOut object on Pin A2.

pwm = pwmio.PWMOut(board.A2, frequency=50)

Create a servo object, my_servo.

my_servo = servo.ContinuousServo(pwm)

while True:
 print("forward")
 my_servo.throttle = 1.0
 time.sleep(2.0)

 print("stop")
 my_servo.throttle = 0.0
 time.sleep(2.0)

 print("reverse")
 my_servo.throttle = -1.0
 time.sleep(2.0)

 print("stop")
 my_servo.throttle = 0.0
 time.sleep(4.0)

Pretty simple!

1.

2.

©Adafruit Industries Page 52 of 115

Note that we assume that 0 degrees is 0.5ms and 180 degrees is a pulse width of

2.5ms. That's a bit wider than the official 1-2ms pulse widths. If you have a servo that

has a different range you can initialize the servo object with a different min_pulse

and max_pulse . For example:

my_servo = servo.Servo(pwm, min_pulse = 500, max_pulse = 2500)

For more detailed information on using servos with CircuitPython, check out the Circ

uitPython section of the servo guide (https://adafru.it/Bei)!

CircuitPython Cap Touch

Nearly all CircuitPython boards provide capacitive touch capabilities. This means each

board has at least one pin that works as an input when you touch it! For SAMD21 (M0)

boards, the capacitive touch is done in hardware, so no external resistors, capacitors

or ICs required. On SAMD51 (M4), nRF52840, and some other boards, Adafruit uses a

software solution: you will need to add a 1M (1 megaohm) resistor from the pin to

ground.

On the Circuit Playground Bluefruit (nrf52840) board, the necessary resistors are

already on the board, so you don't need to add them.

This example will show you how to use a capacitive touch pin on your board.

Copy and paste the code into code.py using your favorite editor, and save the file.

"""CircuitPython Essentials Capacitive Touch example"""

import time
import board
import touchio

touch_pad = board.A0 # Will not work for Circuit Playground Express!
touch_pad = board.A1 # For Circuit Playground Express

touch = touchio.TouchIn(touch_pad)

while True:
 if touch.value:
 print("Touched!")
 time.sleep(0.05)

Create the Touch Input

First, we assign the variable touch_pad to a pin. The example uses A0, so we assign

touch_pad = board.A0 . You can choose any touch capable pin from the list below

©Adafruit Industries Page 53 of 115

file:///home/using-servos-with-circuitpython/circuitpython
file:///home/using-servos-with-circuitpython/circuitpython

if you'd like to use a different pin. Then we create the touch object, name it touch

and attach it to touch_pad .

To use with Circuit Playground Express, comment out touch_pad = board.A0 and

uncomment touch_pad = board.A1 .

Main Loop

Next, we create a loop that checks to see if the pin is touched. If it is, it prints to

the serial console. Connect to the serial console to see the printed results when you

touch the pin!

No extra hardware is required, because you can touch the pin directly. However, you

may want to attach alligator clips or copper tape to metallic or conductive objects. Try

metal flatware, fruit or other foods, liquids, aluminum foil, or other items lying around

your desk!

You may need to reload your code or restart your board after changing the attached

item because the capacitive touch code "calibrates" based on what it sees when it

first starts up. So if you get too many touch responses or not enough, reload your

code through the serial console or eject the board and tap the reset button!

Remember: To "comment out" a line, put a # and a space before it. To

"uncomment" a line, remove the # + space from the beginning of the line.

©Adafruit Industries Page 54 of 115

Find the Pin(s)

Your board may have more touch capable pins beyond A0. We've included a list

below that helps you find A0 (or A1 in the case of CPX) for this example, identified by

the magenta arrow. This list also includes information about any other pins that work

for touch on each board!

To use the other pins, simply change the number in A0 to the pin you want to use. For

example, if you want to use A3 instead, your code would start with touch_pad =

board.A3 .

If you would like to use more than one pin at the same time, your code may look like

the following. If needed, you can modify this code to include pins that work for your

board.

"""CircuitPython Essentials Capacitive Touch on two pins example. Does not work on

Trinket M0!"""

import time
import board
import touchio

touch_A1 = touchio.TouchIn(board.A1) # Not a touch pin on Trinket M0!
touch_A2 = touchio.TouchIn(board.A2) # Not a touch pin on Trinket M0!

while True:
 if touch_A1.value:
 print("Touched A1!")
 if touch_A2.value:
 print("Touched A2!")
 time.sleep(0.05)

Use the list below to find out what pins you can use with your board. Then, try adding

them to your code and have fun!

This example does NOT work for Trinket M0! You must change the pins to use

with this board. This example only works with Gemma, Circuit Playground

Express, Feather M0 Express, Metro M0 Express and ItsyBitsy M0 Express.

©Adafruit Industries Page 55 of 115

Trinket M0

There are three touch capable pins on

Trinket: A0, A3, and A4.

Remember, A0 is labeled "1~" on Trinket

M0!

Gemma M0

There are three pins on Gemma, in the

form of alligator-clip-friendly pads, that

work for touch input: A0, A1 and A2.

QT Py M0

There are six pins on QT Py that work for

touch input: A0 - A3, TX, and RX.

©Adafruit Industries Page 56 of 115

https://learn.adafruit.com//assets/51773
https://learn.adafruit.com//assets/51773
https://learn.adafruit.com//assets/51774
https://learn.adafruit.com//assets/51774
https://learn.adafruit.com//assets/97849
https://learn.adafruit.com//assets/97849

Feather M0 Express

There are 6 pins on the Feather that

have touch capability: A0 - A5.

ItsyBitsy M0 Express

There are 6 pins on the ItsyBitsy that

have touch capability: A0 - A5.

Metro M0 Express

There are 6 pins on the Metro that have

touch capability: A0 - A5.

©Adafruit Industries Page 57 of 115

https://learn.adafruit.com//assets/51775
https://learn.adafruit.com//assets/51775
https://learn.adafruit.com//assets/51776
https://learn.adafruit.com//assets/51776
https://learn.adafruit.com//assets/51777
https://learn.adafruit.com//assets/51777

Circuit Playground Express

Circuit Playground Express has seven

touch capable pins! You have A1 - A7

available, in the form of alligator-clip-

friendly pads. See the CPX guide Cap

Touch section (https://adafru.it/ANC) for

more information on using these pads for

touch!

Remember: A0 does NOT have touch

capabilities on CPX.

CircuitPython Internal RGB LED

Every board has a built in RGB LED. You can use CircuitPython to control the color

and brightness of this LED. There are two different types of internal RGB LEDs: DotSt

ar (https://adafru.it/kDg) and NeoPixel (https://adafru.it/Bej). This section covers both

and explains which boards have which LED.

The first example will show you how to change the color and brightness of the

internal RGB LED.

Copy and paste the code into code.py using your favorite editor, and save the file.

©Adafruit Industries Page 58 of 115

https://learn.adafruit.com//assets/51993
https://learn.adafruit.com//assets/51993
file:///home/adafruit-circuit-playground-express/adafruit2-circuitpython-cap-touch
file:///home/adafruit-circuit-playground-express/adafruit2-circuitpython-cap-touch
file:///home/adafruit-dotstar-leds/overview
file:///home/adafruit-dotstar-leds/overview
file:///home/adafruit-neopixel-uberguide/the-magic-of-neopixels

"""CircuitPython Essentials Internal RGB LED red, green, blue example"""

import time
import board

For Trinket M0, Gemma M0, ItsyBitsy M0 Express, and ItsyBitsy M4 Express

import adafruit_dotstar
led = adafruit_dotstar.DotStar(board.APA102_SCK, board.APA102_MOSI, 1)
For Feather M0 Express, Metro M0 Express, Metro M4 Express, Circuit Playground

Express, QT Py M0

import neopixel

led = neopixel.NeoPixel(board.NEOPIXEL, 1)

led.brightness = 0.3

while True:
 led[0] = (255, 0, 0)
 time.sleep(0.5)

 led[0] = (0, 255, 0)
 time.sleep(0.5)

 led[0] = (0, 0, 255)
 time.sleep(0.5)

Create the LED

First, we create the LED object and attach it to the correct pin or pins. In the case of a

NeoPixel, there is only one pin necessary, and we have called it NEOPIXEL for easier

use. In the case of a DotStar, however, there are two pins necessary, and so we use

the pin names APA102_MOSI and APA102_SCK to get it set up. Since we're using the

single onboard LED, the last thing we do is tell it that there's only 1 LED!

Trinket M0, Gemma M0, ItsyBitsy M0 Express, and ItsyBitsy M4 Express each have an

onboard Dotstar LED, so no changes are needed to the initial version of the example.

QT Py M0, Feather M0 Express, Feather M4 Express, Metro M0 Express, Metro M4

Express, and Circuit Playground Express each have an onboard NeoPixel LED, so you

must comment out import adafruit_dotstar and led =

adafruit_dotstar.DotStar(board.APA102_SCK, board.APA102_MOSI, 1) , and

uncomment import neopixel and led = neopixel.NeoPixel(board.NEOPIXEL,

1) .

Brightness

To set the brightness you simply use the brightness attribute. Brightness is set with

a number between 0 and 1 , representative of a percent from 0% to 100%. So, led.

Remember: To "comment out" a line, put a # and a space before it. To

"uncomment" a line, remove the # + space from the beginning of the line.

©Adafruit Industries Page 59 of 115

brightness = (0.3) sets the LED brightness to 30%. The default brightness is 1 or

100%, and at it's maximum, the LED is blindingly bright! You can set it lower if you

choose.

Main Loop

LED colors are set using a combination of red, green, and blue, in the form of an (R, G,

B) tuple. Each member of the tuple is set to a number between 0 and 255 that

determines the amount of each color present. Red, green and blue in different

combinations can create all the colors in the rainbow! So, for example, to set the LED

to red, the tuple would be (255, 0, 0), which has the maximum level of red, and no

green or blue. Green would be (0, 255, 0), etc. For the colors between, you set a

combination, such as cyan which is (0, 255, 255), with equal amounts of green and

blue.

The main loop is quite simple. It sets the first LED to red using (255, 0, 0) , then gr

een using (0, 255, 0) , and finally blue using (0, 0, 255) . Next, we give it a ti

me.sleep() so it stays each color for a period of time. We chose time.sleep(0.5) ,

or half a second. Without the time.sleep() it'll flash really quickly and the colors

will be difficult to see!

Note that we set led[0] . This means the first, and in the case of most of the boards,

the only LED. In CircuitPython, counting starts at 0. So the first of any object, list, etc

will be 0 !

©Adafruit Industries Page 60 of 115

Try changing the numbers in the tuples to change your LED to any color of the

rainbow. Or, you can add more lines with different color tuples to add more colors to

the sequence. Always add the time.sleep() , but try changing the amount of time

to create different cycle animations!

Making Rainbows (Because Who Doesn't Love 'Em!)

Coding a rainbow effect involves a little math and a helper function called colorwhe

el . For details about how wheel works, see this explanation here (https://adafru.it/

Bek)!

The last example shows how to do a rainbow animation on the internal RGB LED.

Copy and paste the code into code.py using your favorite editor, and save the file. Re

member to comment and uncomment the right lines for the board you're using, as ex

plained above (https://adafru.it/Bel).

"""CircuitPython Essentials Internal RGB LED rainbow example"""

import time
import board
from rainbowio import colorwheel

For Trinket M0, Gemma M0, ItsyBitsy M0 Express and ItsyBitsy M4 Express

import adafruit_dotstar
led = adafruit_dotstar.DotStar(board.APA102_SCK, board.APA102_MOSI, 1)
For Feather M0 Express, Metro M0 Express, Metro M4 Express, Circuit Playground

Express, QT Py M0

import neopixel

led = neopixel.NeoPixel(board.NEOPIXEL, 1)

led.brightness = 0.3

©Adafruit Industries Page 61 of 115

https://learn.adafruit.com/hacking-ikea-lamps-with-circuit-playground-express/generate-your-colors#colorwheel-or-wheel-explained-2982566-3
file:///home/circuitpython-essentials/circuitpython-internal-rgb-led#create-the-led
file:///home/circuitpython-essentials/circuitpython-internal-rgb-led#create-the-led

i = 0
while True:
 i = (i + 1) % 256 # run from 0 to 255
 led.fill(colorwheel(i))

 time.sleep(0.01)

We add the colorwheel function in after setup but before our main loop.

And right before our main loop, we assign the variable i = 0 , so it's ready for use

inside the loop.

The main loop contains some math that cycles i from 0 to 255 and around again

repeatedly. We use this value to cycle colorwheel() through the rainbow!

The time.sleep() determines the speed at which the rainbow changes. Try a

higher number for a slower rainbow or a lower number for a faster one!

Circuit Playground Express Rainbow

Note that here we use led.fill instead of led[0] . This means it turns on all the

LEDs, which in the current code is only one. So why bother with fill ? Well, you may

have a Circuit Playground Express, which as you can see has TEN NeoPixel LEDs built

in. The examples so far have only turned on the first one. If you'd like to do a rainbow

on all ten LEDs, change the 1 in:

led = neopixel.NeoPixel(board.NEOPIXEL, 1)

to 10 so it reads:

led = neopixel.NeoPixel(board.NEOPIXEL, 10) .

This tells the code to look for 10 LEDs instead of only 1. Now save the code and watch

the rainbow go! You can make the same 1 to 10 change to the previous examples

as well, and use led.fill to light up all the LEDs in the colors you chose! For more

details, check out the NeoPixel section of the CPX guide (https://adafru.it/Bem)!

©Adafruit Industries Page 62 of 115

file:///home/adafruit-circuit-playground-express/circuitpython-neopixel

CircuitPython NeoPixel

NeoPixels are a revolutionary and ultra-popular way to add lights and color to your

project. These stranded RGB lights have the controller inside the LED, so you just

push the RGB data and the LEDs do all the work for you. They're a perfect match for

CircuitPython!

You can drive 300 NeoPixel LEDs with brightness control (set brightness=1.0 in

object creation) and 1000 LEDs without. That's because to adjust the brightness we

have to dynamically recreate the data-stream each write.

You'll need the neopixel.mpy library if you don't already have it in your /lib folder! You

can get it from the CircuitPython Library Bundle (https://adafru.it/y8E). If you need

help installing the library, check out the CircuitPython Libraries page (https://adafru.it/

ABU).

Wiring It Up

You'll need to solder up your NeoPixels first. Verify your connection is on the DATA

INPUT or DIN side. Plugging into the DATA OUT or DOUT side is a common mistake!

The connections are labeled and some formats have arrows to indicate the direction

the data must flow.

For powering the pixels from the board, the 3.3V regulator output can handle about

500mA peak which is about 50 pixels with 'average' use. If you want really bright

©Adafruit Industries Page 63 of 115

https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/latest
file:///home/welcome-to-circuitpython/circuitpython-libraries

lights and a lot of pixels, we recommend powering direct from an external power

source.

On Gemma M0 and Circuit Playground Express this is the Vout pad - that pad

has direct power from USB or the battery, depending on which is higher voltage.

On Trinket M0, Feather M0 Express, Feather M4 Express, ItsyBitsy M0 Express

and ItsyBitsy M4 Express the USB or BAT pins will give you direct power from

the USB port or battery.

On Metro M0 Express and Metro M4 Express, use the 5V pin regardless of

whether it's powered via USB or the DC jack.

On QT Py M0, use the 5V pin.

If the power to the NeoPixels is greater than 5.5V you may have some difficulty

driving some strips, in which case you may need to lower the voltage to 4.5-5V or use

a level shifter.

The Code

This example includes multiple visual effects. Copy and paste the code into code.py

using your favorite editor, and save the file.

"""CircuitPython Essentials NeoPixel example"""

import time
import board
from rainbowio import colorwheel
import neopixel

pixel_pin = board.A1

•

•

•

•

Do not use the VIN pin directly on Metro M0 Express or Metro M4 Express! The

voltage can reach 9V and this can destroy your NeoPixels!

Note that the wire ordering on your NeoPixel strip or shape may not exactly

match the diagram above. Check the markings to verify which pin is DIN, 5V and

GND

©Adafruit Industries Page 64 of 115

num_pixels = 8

pixels = neopixel.NeoPixel(pixel_pin, num_pixels, brightness=0.3, auto_write=False)

def color_chase(color, wait):
 for i in range(num_pixels):
 pixels[i] = color
 time.sleep(wait)

 pixels.show()

 time.sleep(0.5)

def rainbow_cycle(wait):
 for j in range(255):
 for i in range(num_pixels):
 rc_index = (i * 256 // num_pixels) + j
 pixels[i] = colorwheel(rc_index & 255)
 pixels.show()

 time.sleep(wait)

RED = (255, 0, 0)
YELLOW = (255, 150, 0)
GREEN = (0, 255, 0)
CYAN = (0, 255, 255)
BLUE = (0, 0, 255)
PURPLE = (180, 0, 255)

while True:
 pixels.fill(RED)

 pixels.show()

 # Increase or decrease to change the speed of the solid color change.

 time.sleep(1)

 pixels.fill(GREEN)

 pixels.show()

 time.sleep(1)

 pixels.fill(BLUE)

 pixels.show()

 time.sleep(1)

 color_chase(RED, 0.1) # Increase the number to slow down the color chase

 color_chase(YELLOW, 0.1)

 color_chase(GREEN, 0.1)

 color_chase(CYAN, 0.1)

 color_chase(BLUE, 0.1)

 color_chase(PURPLE, 0.1)

 rainbow_cycle(0) # Increase the number to slow down the rainbow

Create the LED

The first thing we'll do is create the LED object. The NeoPixel object has two required

arguments and two optional arguments. You are required to set the pin you're using

to drive your NeoPixels and provide the number of pixels you intend to use. You can

optionally set brightness and auto_write .

NeoPixels can be driven by any pin. We've chosen A1. To set the pin, assign the

variable pixel_pin to the pin you'd like to use, in our case board.A1 .

©Adafruit Industries Page 65 of 115

To provide the number of pixels, assign the variable num_pixels to the number of

pixels you'd like to use. In this example, we're using a strip of 8 .

We've chosen to set brightness=0.3 , or 30%.

By default, auto_write=True , meaning any changes you make to your pixels will be

sent automatically. Since True is the default, if you use that setting, you don't need

to include it in your LED object at all. We've chosen to set auto_write=False . If you

set auto_write=False , you must include pixels.show() each time you'd like to

send data to your pixels. This makes your code more complicated, but it can make

your LED animations faster!

NeoPixel Helpers

Next we've included a few helper functions to create the super fun visual effects

found in this code. First is wheel() which we just learned with the Internal RGB LED (

https://adafru.it/Bel). Then we have color_chase() which requires you to provide a

color and the amount of time in seconds you'd like between each step of the chase.

Next we have rainbow_cycle() , which requires you to provide the mount of time in

seconds you'd like the animation to take. Last, we've included a list of variables for

our colors. This makes it much easier if to reuse the colors anywhere in the code, as

well as add more colors for use in multiple places. Assigning and using RGB colors is

explained in this section of the CircuitPython Internal RGB LED page (https://adafru.it/

Bel).

Main Loop

Thanks to our helpers, our main loop is quite simple. We include the code to set every

NeoPixel we're using to red, green and blue for 1 second each. Then we call color_

chase() , one time for each color on our list with 0.1 second delay between

setting each subsequent LED the same color during the chase. Last we call rainbow

_cycle(0) , which means the animation is as fast as it can be. Increase both of those

numbers to slow down each animation!

Note that the longer your strip of LEDs, the longer it will take for the animations to

complete.

We have a ton more information on general purpose NeoPixel know-how at our

NeoPixel UberGuide https://learn.adafruit.com/adafruit-neopixel-uberguide

©Adafruit Industries Page 66 of 115

file:///home/circuitpython-essentials/circuitpython-internal-rgb-led
file:///home/circuitpython-essentials/circuitpython-internal-rgb-led#main-loop
https://learn.adafruit.com/adafruit-neopixel-uberguide

NeoPixel RGBW

NeoPixels are available in RGB, meaning there are three LEDs inside, red, green and

blue. They're also available in RGBW, which includes four LEDs, red, green, blue and

white. The code for RGBW NeoPixels is a little bit different than RGB.

If you run RGB code on RGBW NeoPixels, approximately 3/4 of the LEDs will light up

and the LEDs will be the incorrect color even though they may appear to be changing.

This is because NeoPixels require a piece of information for each available color (red,

green, blue and possibly white).

Therefore, RGB LEDs require three pieces of information and RGBW LEDs require

FOUR pieces of information to work. So when you create the LED object for RGBW

LEDs, you'll include pixel_order=(1, 0, 2, 3) , which sets the pixel order and

indicates four pieces of information involved.

Then, you must include an extra number in every color tuple you create. For example,

red will be (255, 0, 0, 0) . This is how you send the fourth piece of information.

Check out the example below to see how our NeoPixel code looks for using with

RGBW LEDs!

"""CircuitPython Essentials NeoPixel RGBW example"""

import time
import board
import neopixel

pixel_pin = board.A1
num_pixels = 8

pixels = neopixel.NeoPixel(pixel_pin, num_pixels, brightness=0.3, auto_write=False,
 pixel_order=(1, 0, 2, 3))

def colorwheel(pos):
 # Input a value 0 to 255 to get a color value.

 # The colours are a transition r - g - b - back to r.

 if pos < 0 or pos > 255:
 return (0, 0, 0, 0)
 if pos < 85:
 return (255 - pos * 3, pos * 3, 0, 0)
 if pos < 170:
 pos -= 85
 return (0, 255 - pos * 3, pos * 3, 0)
 pos -= 170
 return (pos * 3, 0, 255 - pos * 3, 0)

def color_chase(color, wait):
 for i in range(num_pixels):
 pixels[i] = color
 time.sleep(wait)

 pixels.show()

 time.sleep(0.5)

©Adafruit Industries Page 67 of 115

def rainbow_cycle(wait):
 for j in range(255):
 for i in range(num_pixels):
 rc_index = (i * 256 // num_pixels) + j
 pixels[i] = colorwheel(rc_index & 255)
 pixels.show()

 time.sleep(wait)

RED = (255, 0, 0, 0)
YELLOW = (255, 150, 0, 0)
GREEN = (0, 255, 0, 0)
CYAN = (0, 255, 255, 0)
BLUE = (0, 0, 255, 0)
PURPLE = (180, 0, 255, 0)

while True:
 pixels.fill(RED)

 pixels.show()

 # Increase or decrease to change the speed of the solid color change.

 time.sleep(1)

 pixels.fill(GREEN)

 pixels.show()

 time.sleep(1)

 pixels.fill(BLUE)

 pixels.show()

 time.sleep(1)

 color_chase(RED, 0.1) # Increase the number to slow down the color chase

 color_chase(YELLOW, 0.1)

 color_chase(GREEN, 0.1)

 color_chase(CYAN, 0.1)

 color_chase(BLUE, 0.1)

 color_chase(PURPLE, 0.1)

 rainbow_cycle(0) # Increase the number to slow down the rainbow

Read the Docs

For a more in depth look at what neopixel can do, check out NeoPixel on Read the

Docs (https://adafru.it/C5m).

CircuitPython DotStar

DotStars use two wires, unlike NeoPixel's one wire. They're very similar but you can

write to DotStars much faster with hardware SPI and they have a faster PWM cycle so

they are better for light painting.

Any pins can be used but if the two pins can form a hardware SPI port, the library will

automatically switch over to hardware SPI. If you use hardware SPI then you'll get 4

MHz clock rate (that would mean updating a 64 pixel strand in about 500uS - that's

0.0005 seconds). If you use non-hardware SPI pins you'll drop down to about 3KHz,

1000 times as slow!

©Adafruit Industries Page 68 of 115

https://circuitpython.readthedocs.io/projects/neopixel/en/latest/
https://circuitpython.readthedocs.io/projects/neopixel/en/latest/

You can drive 300 DotStar LEDs with brightness control (set brightness=1.0 in

object creation) and 1000 LEDs without. That's because to adjust the brightness we

have to dynamically recreate the data-stream each write.

You'll need the adafruit_dotstar.mpy library if you don't already have it in your /lib

folder! You can get it from the CircuitPython Library Bundle (https://adafru.it/y8E). If

you need help installing the library, check out the CircuitPython Libraries page (https:

//adafru.it/ABU).

Wire It Up

You'll need to solder up your DotStars first. Verify your connection is on the DATA

INPUT or DI and CLOCK INPUT or CI side. Plugging into the DATA OUT/DO or CLOCK

OUT/CO side is a common mistake! The connections are labeled and some formats

have arrows to indicate the direction the data must flow. Always verify your wiring

with a visual inspection, as the order of the connections can differ from strip to strip!

For powering the pixels from the board, the 3.3V regulator output can handle about

500mA peak which is about 50 pixels with 'average' use. If you want really bright

lights and a lot of pixels, we recommend powering direct from an external power

source.

On Gemma M0 and Circuit Playground Express this is the Vout pad - that pad

has direct power from USB or the battery, depending on which is higher voltage.

On Trinket M0, Feather M0 Express, Feather M4 Express, ItsyBitsy M0 Express

and ItsyBitsy M4 Express the USB or BAT pins will give you direct power from

the USB port or battery.

On Metro M0 Express and Metro M4 Express, use the 5V pin regardless of

whether it's powered via USB or the DC jack.

On QT Py M0, use the 5V pin.

•

•

•

•

©Adafruit Industries Page 69 of 115

https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/latest
file:///home/welcome-to-circuitpython/circuitpython-libraries

If the power to the DotStars is greater than 5.5V you may have some difficulty driving

some strips, in which case you may need to lower the voltage to 4.5-5V or use a level

shifter.

The Code

This example includes multiple visual effects. Copy and paste the code into code.py

using your favorite editor, and save the file.

"""CircuitPython Essentials DotStar example"""

import time
from rainbowio import colorwheel
import adafruit_dotstar
import board

num_pixels = 30
pixels = adafruit_dotstar.DotStar(board.A1, board.A2, num_pixels, brightness=0.1,
auto_write=False)

def color_fill(color, wait):
 pixels.fill(color)

 pixels.show()

 time.sleep(wait)

def slice_alternating(wait):
 pixels[::2] = [RED] * (num_pixels // 2)
 pixels.show()

 time.sleep(wait)

 pixels[1::2] = [ORANGE] * (num_pixels // 2)
 pixels.show()

 time.sleep(wait)

 pixels[::2] = [YELLOW] * (num_pixels // 2)
 pixels.show()

Do not use the VIN pin directly on Metro M0 Express or Metro M4 Express! The

voltage can reach 9V and this can destroy your DotStars!

Note that the wire ordering on your DotStar strip or shape may not exactly match

the diagram above. Check the markings to verify which pin is DIN, CIN, 5V and

GND

©Adafruit Industries Page 70 of 115

 time.sleep(wait)

 pixels[1::2] = [GREEN] * (num_pixels // 2)
 pixels.show()

 time.sleep(wait)

 pixels[::2] = [TEAL] * (num_pixels // 2)
 pixels.show()

 time.sleep(wait)

 pixels[1::2] = [CYAN] * (num_pixels // 2)
 pixels.show()

 time.sleep(wait)

 pixels[::2] = [BLUE] * (num_pixels // 2)
 pixels.show()

 time.sleep(wait)

 pixels[1::2] = [PURPLE] * (num_pixels // 2)
 pixels.show()

 time.sleep(wait)

 pixels[::2] = [MAGENTA] * (num_pixels // 2)
 pixels.show()

 time.sleep(wait)

 pixels[1::2] = [WHITE] * (num_pixels // 2)
 pixels.show()

 time.sleep(wait)

def slice_rainbow(wait):
 pixels[::6] = [RED] * (num_pixels // 6)
 pixels.show()

 time.sleep(wait)

 pixels[1::6] = [ORANGE] * (num_pixels // 6)
 pixels.show()

 time.sleep(wait)

 pixels[2::6] = [YELLOW] * (num_pixels // 6)
 pixels.show()

 time.sleep(wait)

 pixels[3::6] = [GREEN] * (num_pixels // 6)
 pixels.show()

 time.sleep(wait)

 pixels[4::6] = [BLUE] * (num_pixels // 6)
 pixels.show()

 time.sleep(wait)

 pixels[5::6] = [PURPLE] * (num_pixels // 6)
 pixels.show()

 time.sleep(wait)

def rainbow_cycle(wait):
 for j in range(255):
 for i in range(num_pixels):
 rc_index = (i * 256 // num_pixels) + j
 pixels[i] = colorwheel(rc_index & 255)
 pixels.show()

 time.sleep(wait)

RED = (255, 0, 0)
YELLOW = (255, 150, 0)
ORANGE = (255, 40, 0)
GREEN = (0, 255, 0)
TEAL = (0, 255, 120)
CYAN = (0, 255, 255)
BLUE = (0, 0, 255)
PURPLE = (180, 0, 255)
MAGENTA = (255, 0, 20)
WHITE = (255, 255, 255)

while True:
 # Change this number to change how long it stays on each solid color.

 color_fill(RED, 0.5)

 color_fill(YELLOW, 0.5)

©Adafruit Industries Page 71 of 115

 color_fill(ORANGE, 0.5)

 color_fill(GREEN, 0.5)

 color_fill(TEAL, 0.5)

 color_fill(CYAN, 0.5)

 color_fill(BLUE, 0.5)

 color_fill(PURPLE, 0.5)

 color_fill(MAGENTA, 0.5)

 color_fill(WHITE, 0.5)

 # Increase or decrease this to speed up or slow down the animation.

 slice_alternating(0.1)

 color_fill(WHITE, 0.5)

 # Increase or decrease this to speed up or slow down the animation.

 slice_rainbow(0.1)

 time.sleep(0.5)

 # Increase this number to slow down the rainbow animation.

 rainbow_cycle(0)

Create the LED

The first thing we'll do is create the LED object. The DotStar object has three required

arguments and two optional arguments. You are required to set the pin you're using

for data, set the pin you'll be using for clock, and provide the number of pixels you

intend to use. You can optionally set brightness and auto_write .

DotStars can be driven by any two pins. We've chosen A1 for clock and A2 for data. To

set the pins, include the pin names at the beginning of the object creation, in this

case board.A1 and board.A2 .

To provide the number of pixels, assign the variable num_pixels to the number of

pixels you'd like to use. In this example, we're using a strip of 72 .

We've chosen to set brightness=0.1 , or 10%.

By default, auto_write=True , meaning any changes you make to your pixels will be

sent automatically. Since True is the default, if you use that setting, you don't need

to include it in your LED object at all. We've chosen to set auto_write=False . If you

set auto_write=False , you must include pixels.show() each time you'd like to

send data to your pixels. This makes your code more complicated, but it can make

your LED animations faster!

We've chosen pins A1 and A2, but these are not SPI pins on all boards. DotStars

respond faster when using hardware SPI!

©Adafruit Industries Page 72 of 115

DotStar Helpers

We've included a few helper functions to create the super fun visual effects found in

this code.

First is wheel() which we just learned with the Internal RGB LED (https://adafru.it/

Bel). Then we have color_fill() which requires you to provide a color and the

length of time you'd like it to be displayed. Next, are slice_alternating() , slice

_rainbow() , and rainbow_cycle() which require you to provide the amount of

time in seconds you'd between each step of the animation.

Last, we've included a list of variables for our colors. This makes it much easier if to

reuse the colors anywhere in the code, as well as add more colors for use in multiple

places. Assigning and using RGB colors is explained in this section of the

CircuitPython Internal RGB LED page (https://adafru.it/Bel).

The two slice helpers utilise a nifty feature of the DotStar library that allows us to use

math to light up LEDs in repeating patterns. slice_alternating() first lights up the

even number LEDs and then the odd number LEDs and repeats this back and forth. s

lice_rainbow() lights up every sixth LED with one of the six rainbow colors until the

strip is filled. Both use our handy color variables. This slice code only works when the

total number of LEDs is divisible by the slice size, in our case 2 and 6. DotStars come

in strips of 30, 60, 72, and 144, all of which are divisible by 2 and 6. In the event that

you cut them into different sized strips, the code in this example may not work without

modification. However, as long as you provide a total number of LEDs that is divisible

by the slices, the code will work.

Main Loop

Our main loop begins by calling color_fill() once for each color on our list and

sets each to hold for 0.5 seconds. You can change this number to change how fast

each color is displayed. Next, we call slice_alternating(0.1) , which means

there's a 0.1 second delay between each change in the animation. Then, we fill the

strip white to create a clean backdrop for the rainbow to display. Then, we call slice

_rainbow(0.1) , for a 0.1 second delay in the animation. Last we call rainbow_cycl

e(0) , which means it's as fast as it can possibly be. Increase or decrease either of

these numbers to speed up or slow down the animations!

Note that the longer your strip of LEDs is, the longer it will take for the animations to

complete.

©Adafruit Industries Page 73 of 115

file:///home/circuitpython-essentials/circuitpython-internal-rgb-led
file:///home/circuitpython-essentials/circuitpython-internal-rgb-led#main-loop
file:///home/circuitpython-essentials/circuitpython-internal-rgb-led#main-loop

Is it SPI?

We explained at the beginning of this section that the LEDs respond faster if you're

using hardware SPI. On some of the boards, there are HW SPI pins directly available

in the form of MOSI and SCK. However, hardware SPI is available on more than just

those pins. But, how can you figure out which? Easy! We wrote a handy script.

We chose pins A1 and A2 for our example code. To see if these are hardware SPI on

the board you're using, copy and paste the code into code.py using your favorite

editor, and save the file. Then connect to the serial console to see the results.

To check if other pin combinations have hardware SPI, change the pin names on the

line reading: if is_hardware_SPI(board.A1, board.A2): to the pins you want to

use. Then, check the results in the serial console. Super simple!

"""CircuitPython Essentials Hardware SPI pin verification script"""

import board
import busio

def is_hardware_spi(clock_pin, data_pin):
 try:
 p = busio.SPI(clock_pin, data_pin)
 p.deinit()

 return True
 except ValueError:
 return False

Provide the two pins you intend to use.

if is_hardware_spi(board.A1, board.A2):
 print("This pin combination is hardware SPI!")
else:
 print("This pin combination isn't hardware SPI.")

Read the Docs

For a more in depth look at what dotstar can do, check out DotStar on Read the

Docs (https://adafru.it/C4d).

We have a ton more information on general purpose DotStar know-how at our

DotStar UberGuide https://learn.adafruit.com/adafruit-dotstar-leds

©Adafruit Industries Page 74 of 115

https://learn.adafruit.com/adafruit-dotstar-leds
https://circuitpython.readthedocs.io/projects/dotstar/en/latest/
https://circuitpython.readthedocs.io/projects/dotstar/en/latest/

CircuitPython UART Serial

In addition to the USB-serial connection you use for the REPL, there is also a hardwar

e UART you can use. This is handy to talk to UART devices like GPSs, some sensors,

or other microcontrollers!

This quick-start example shows how you can create a UART device for communicating

with hardware serial devices.

To use this example, you'll need something to generate the UART data. We've used a

GPS! Note that the GPS will give you UART data without getting a fix on your location.

You can use this example right from your desk! You'll have data to read, it simply won't

include your actual location.

LED + to QT Py SCK

LED - to 470Ω resistor

470Ω resistor to QT Py GND

Copy and paste the code into code.py using your favorite editor, and save the file.

"""CircuitPython Essentials UART Serial example"""

import board
import busio
import digitalio

For most CircuitPython boards:

led = digitalio.DigitalInOut(board.LED)
For QT Py M0:

led = digitalio.DigitalInOut(board.SCK)

led.direction = digitalio.Direction.OUTPUT

uart = busio.UART(board.TX, board.RX, baudrate=9600)

while True:
 data = uart.read(32) # read up to 32 bytes
 # print(data) # this is a bytearray type

The QT Py M0 does not have a little red LED. Therefore, you must connect an

external LED and edit this example for it to work. Follow the wiring diagram and

steps below to run this example on QT Py M0.

•

•

•

©Adafruit Industries Page 75 of 115

https://learn.adafruit.com//assets/102008
https://learn.adafruit.com//assets/102008

 if data is not None:
 led.value = True

 # convert bytearray to string

 data_string = ''.join([chr(b) for b in data])
 print(data_string, end="")

 led.value = False

For QT Py M0, you'll need to comment out led = DigitalInOut(board.LED) and

uncomment led = DigitalInOut(board.SCK) . The UART code remains the same.

The Code

First we create the UART object. We provide the pins we'd like to use, board.TX and

board.RX , and we set the baudrate=9600 . While these pins are labeled on most of

the boards, be aware that RX and TX are not labeled on Gemma, and are labeled on

the bottom of Trinket. See the diagrams below for help with finding the correct pins

on your board.

Once the object is created you read data in with read(numbytes) where you can

specify the max number of bytes. It will return a byte array type object if anything was

received already. Note it will always return immediately because there is an internal

buffer! So read as much data as you can 'digest'.

If there is no data available, read() will return None , so check for that before

continuing.

The data that is returned is in a byte array, if you want to convert it to a string, you can

use this handy line of code which will run chr() on each byte:

datastr = ''.join([chr(b) for b in data]) # convert bytearray to

string

Your results will look something like this:

Note: To "comment out" a line, put a # and a space before it. To "uncomment" a

line, remove the # + space from the beginning of the line.

©Adafruit Industries Page 76 of 115

Wire It Up

You'll need a couple of things to connect the GPS to your board.

For Gemma M0 and Circuit Playground Express, you can use use alligator clips to

connect to the Flora Ultimate GPS Module.

For Trinket M0, Feather M0 Express, Metro M0 Express and ItsyBitsy M0 Express,

you'll need a breadboard and jumper wires to connect to the Ultimate GPS Breakout.

We've included diagrams show you how to connect the GPS to your board. In these

diagrams, the wire colors match the same pins on each board.

The black wire connects between the ground pins.

The red wire connects between the power pins on the GPS and your board.

The blue wire connects from TX on the GPS to RX on your board.

The white wire connects from RX on the GPS to TX on your board.

Check out the list below for a diagram of your specific board!

For more information about the data you're reading and the Ultimate GPS, check

out the Ultimate GPS guide: https://learn.adafruit.com/adafruit-ultimate-gps

•

•

•

•

©Adafruit Industries Page 77 of 115

https://learn.adafruit.com/adafruit-ultimate-gps

Circuit Playground Express and Circuit

Playground Bluefruit

Connect 3.3v on your CPX to 3.3v

on your GPS.

Connect GND on your CPX to GND

on your GPS.

Connect RX/A6 on your CPX to TX

on your GPS.

Connect TX/A7 on your CPX to RX

on your GPS.

Trinket M0

Connect USB on the Trinket to VIN

on the GPS.

Connect Gnd on the Trinket to GND

on the GPS.

Connect D3 on the Trinket to TX on

the GPS.

Connect D4 on the Trinket to RX on

the GPS.

Gemma M0

Connect 3vo on the Gemma to 3.3v

on the GPS.

Connect GND on the Gemma to

GND on the GPS.

Connect A1/D2 on the Gemma to

TX on the GPS.

Connect A2/D0 on the Gemma to

RX on the GPS.

Watch out! A common mixup with UART serial is that RX on one board connects

to TX on the other! However, sometimes boards have RX labeled TX and vice

versa. So, you'll want to start with RX connected to TX, but if that doesn't work,

try the other way around!

•

•

•

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 78 of 115

https://learn.adafruit.com//assets/52309
https://learn.adafruit.com//assets/52309
https://learn.adafruit.com//assets/52310
https://learn.adafruit.com//assets/52310
https://learn.adafruit.com//assets/52311
https://learn.adafruit.com//assets/52311

QT Py M0

Connect 3V on the QT Py to VIN on

the GPS.

Connect GND on the QT Py to GND

on the GPS.

Connect RX on the QT Py to TX on

the GPS.

Connect TX on the QT Py to RX on

the GPS.

Feather M0 Express and Feather M4

Express

Connect USB on the Feather to VIN

on the GPS.

Connect GND on the Feather to

GND on the GPS.

Connect RX on the Feather to TX

on the GPS.

Connect TX on the Feather to RX

on the GPS.

ItsyBitsy M0 Express and ItsyBitsy M4

Express

Connect USB on the ItsyBitsy to VIN

on the GPS

Connect G on the ItsyBitsy to GND

on the GPS.

Connect RX/0 on the ItsyBitsy to TX

on the GPS.

Connect TX/1 on the ItsyBitsy to RX

on the GPS.

•

•

•

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 79 of 115

https://learn.adafruit.com//assets/97860
https://learn.adafruit.com//assets/97860
https://learn.adafruit.com//assets/52312
https://learn.adafruit.com//assets/52312
https://learn.adafruit.com//assets/52324
https://learn.adafruit.com//assets/52324

Metro M0 Express and Metro M4 Express

Connect 5V on the Metro to VIN on

the GPS.

Connect GND on the Metro to GND

on the GPS.

Connect RX/D0 on the Metro to TX

on the GPS.

Connect TX/D1 on the Metro to RX

on the GPS.

Where's my UART?

On the SAMD21, we have the flexibility of using a wide range of pins for UART.

Compare this to some chips like the ESP8266 with fixed UART pins. The good news is

you can use many but not all pins. Given the large number of SAMD boards we have,

its impossible to guarantee anything other than the labeled 'TX' and 'RX'. So, if you

want some other setup, or multiple UARTs, how will you find those pins? Easy! We've

written a handy script.

All you need to do is copy this file to your board, rename it code.py, connect to the

serial console and check out the output! The results print out a nice handy list of RX

and TX pin pairs that you can use.

These are the results from a Trinket M0, your output may vary and it might be very

long. For more details about UARTs and SERCOMs check out our detailed guide here

(https://adafru.it/Ben)

"""CircuitPython Essentials UART possible pin-pair identifying script"""

import board
import busio
from microcontroller import Pin

def is_hardware_uart(tx, rx):
 try:

•

•

•

•

©Adafruit Industries Page 80 of 115

https://learn.adafruit.com//assets/52328
https://learn.adafruit.com//assets/52328
file:///home/using-atsamd21-sercom-to-add-more-spi-i2c-serial-ports

 p = busio.UART(tx, rx)
 p.deinit()

 return True
 except ValueError:
 return False

def get_unique_pins():
 exclude = ['NEOPIXEL', 'APA102_MOSI', 'APA102_SCK']
 pins = [pin for pin in [
 getattr(board, p) for p in dir(board) if p not in exclude]
 if isinstance(pin, Pin)]
 unique = []
 for p in pins:
 if p not in unique:
 unique.append(p)

 return unique

for tx_pin in get_unique_pins():
 for rx_pin in get_unique_pins():
 if rx_pin is tx_pin:
 continue
 if is_hardware_uart(tx_pin, rx_pin):
 print("RX pin:", rx_pin, "\t TX pin:", tx_pin)

Trinket M0: Create UART before I2C

On the Trinket M0 (only), if you are using both UART and I2C, you must create the

UART object first, e.g.:

>>> import board
>>> uart = board.UART() # Uses pins 4 and 3 for TX and RX, baudrate 9600.
>>> i2c = board.I2C() # Uses pins 2 and 0 for SCL and SDA.

or alternatively,

Creating the I2C object first does not work:

>>> import board
>>> i2c = board.I2C() # Uses pins 2 and 0 for SCL and SDA.
>>> uart = board.UART() # Uses pins 4 and 3 for TX and RX, baudrate 9600.
Traceback (most recent call last):

File "", line 1, in
ValueError: Invalid pins

©Adafruit Industries Page 81 of 115

CircuitPython I2C

I2C is a 2-wire protocol for communicating with simple sensors and devices, meaning

it uses two connections for transmitting and receiving data. There are many I2C

devices available and they're really easy to use with CircuitPython. We have libraries

available for many I2C devices in the library bundle (https://adafru.it/uap). (If you don't

see the sensor you're looking for, keep checking back, more are being written all the

time!)

In this section, we're going to do is learn how to scan the I2C bus for all connected

devices. Then we're going to learn how to interact with an I2C device.

We'll be using the Adafruit TSL2591 (https://adafru.it/dGE), a common, low-cost light

sensor. While the exact code we're running is specific to the TSL2591 the overall

process is the same for just about any I2C sensor or device.

You'll need the adafruit_tsl2591.mpy library and adafruit_bus_device library folder if

you don't already have it in your /lib folder! You can get it from the CircuitPython

Library Bundle (https://adafru.it/y8E). If you need help installing the library, check out

the CircuitPython Libraries page (https://adafru.it/ABU).

These examples will use the TSL2591 lux sensor breakout. The first thing you'll want

to do is get the sensor connected so your board has I2C to talk to.

Wire It Up

You'll need a couple of things to connect the TSL2591 to your board. The TSL2591

comes with STEMMA QT / QWIIC connectors on it, which makes it super simple to

wire it up. No further soldering required!

For Gemma M0, Circuit Playground Express and Circuit Playground Bluefruit, you can

use use the STEMMA QT to alligator clips cable (https://adafru.it/KKa) to connect to

the TSL2591.

For Trinket M0, Feather M0 and M4 Express, Metro M0 and M4 Express and ItsyBitsy

M0 and M4 Express, you'll need a breadboard and STEMMA QT to male jumper wires

cable (https://adafru.it/FA-) to connect to the TSL2591.

For QT Py M0, you'll need a STEMMA QT cable (https://adafru.it/FNS) to connect to

the TSL2591.

©Adafruit Industries Page 82 of 115

https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases
https://www.adafruit.com/product/1980
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/latest
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/latest
file:///home/welcome-to-circuitpython/circuitpython-libraries
https://www.adafruit.com/product/4398
https://www.adafruit.com/product/4209
https://www.adafruit.com/product/4209
https://www.adafruit.com/product/4210

We've included diagrams show you how to connect the TSL2591 to your board. In

these diagrams, the wire colors match the STEMMA QT cables and connect to the

same pins on each board.

The black wire connects from GND on the TSL2591 to ground on your board.

The red wire connects from VIN on the TSL2591 to power on your board.

The yellow wire connects from SCL on the TSL2591 to SCL on your board.

The blue wire connects from SDA on the TSL2591 to SDA on your board.

Check out the list below for a diagram of your specific board!

Circuit Playground Express and Circuit

Playground Bluefruit

Connect 3.3v on your CPX to 3.3v

on your TSL2591.

Connect GND on your CPX to GND

on your TSL2591.

Connect SCL/A4 on your CPX to

SCL on your TSL2591.

Connect SDL/A5 on your CPX to

SDA on your TSL2591.

Trinket M0

Connect USB on the Trinket to VIN

on the TSL2591.

Connect Gnd on the Trinket to GND

on the TSL2591.

Connect D2 on the Trinket to SCL

on the TSL2591.

Connect D0 on the Trinket to SDA

on the TSL2591.

•

•

•

•

Be aware that the Adafruit microcontroller boards do not have I2C pullup

resistors built in! All of the Adafruit breakouts do, but if you're building your own

board or using a non-Adafruit breakout, you must add 2.2K-10K ohm pullups on

both SDA and SCL to the 3.3V.

•

•

•

•

•

•

•

•

©Adafruit Industries Page 83 of 115

https://learn.adafruit.com//assets/97884
https://learn.adafruit.com//assets/97884
https://learn.adafruit.com//assets/97885
https://learn.adafruit.com//assets/97885

Gemma M0

Connect 3vo on the Gemma to 3V

on the TSL2591.

Connect GND on the Gemma to

GND on the TSL2591.

Connect A1/D2 on the Gemma to

SCL on the TSL2591.

Connect A2/D0 on the Gemma to

SDA on the TSL2591.

QT Py M0

If using the STEMMA QT cable:

Connect the STEMMA QT cable

from the connector on the QT Py to

the connector on the TSL2591.

Alternatively, if using a breadboard:

Connect 3V on the QT Py to VIN on

the TSL2591.

Connect GND on the QT Py to GND

on the TSL2591.

Connect SCL on the QT Py to SCL

on the TSL2591.

Connect SDA on the QT Py to SDA

on the TSL2591.

Feather M0 Express and Feather M4

Express

Connect USB on the Feather to VIN

on the TSL2591.

Connect GND on the Feather to

GND on the TSL2591.

Connect SCL on the Feather to SCL

on the TSL2591.

Connect SDA on the Feather to

SDA on the TSL2591.

•

•

•

•

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 84 of 115

https://learn.adafruit.com//assets/97886
https://learn.adafruit.com//assets/97886
https://learn.adafruit.com//assets/97890
https://learn.adafruit.com//assets/97890
https://learn.adafruit.com//assets/97887
https://learn.adafruit.com//assets/97887

ItsyBitsy M0 Express and ItsyBitsy M4

Express

Connect USB on the ItsyBitsy to VIN

on the TSL2591

Connect G on the ItsyBitsy to GND

on the TSL2591.

Connect SCL on the ItsyBitsy to SCL

on the TSL2591.

Connect SDA on the ItsyBitsy to

SDA on the TSL2591.

Metro M0 Express and Metro M4 Express

Connect 5V on the Metro to VIN on

the TSL2591.

Connect GND on the Metro to GND

on the TSL2591.

Connect SCL on the Metro to SCL

on the TSL2591.

Connect SDA on the Metro to SDA

on the TSL2591.

Find Your Sensor

The first thing you'll want to do after getting the sensor wired up, is make sure it's

wired correctly. We're going to do an I2C scan to see if the board is detected, and if it

is, print out its I2C address.

Copy and paste the code into code.py using your favorite editor, and save the file.

"""CircuitPython I2C Device Address Scan"""

If you run this and it seems to hang, try manually unlocking

your I2C bus from the REPL with

>>> import board

>>> board.I2C().unlock()

import time
import board

To use default I2C bus (most boards)

i2c = board.I2C()

•

•

•

•

•

•

•

•

©Adafruit Industries Page 85 of 115

https://learn.adafruit.com//assets/97888
https://learn.adafruit.com//assets/97888
https://learn.adafruit.com//assets/97889
https://learn.adafruit.com//assets/97889

To create I2C bus on specific pins

import busio

i2c = busio.I2C(board.SCL1, board.SDA1) # QT Py RP2040 STEMMA connector

i2c = busio.I2C(board.GP1, board.GP0) # Pi Pico RP2040

while not i2c.try_lock():
 pass

try:
 while True:
 print(
 "I2C addresses found:",

 [hex(device_address) for device_address in i2c.scan()],
)

 time.sleep(2)

finally: # unlock the i2c bus when ctrl-c'ing out of the loop
 i2c.unlock()

First we create the i2c object, using board.I2C() . This convenience routine

creates and saves a busio.I2C object using the default pins board.SCL and boar

d.SDA . If the object has already been created, then the existing object is returned. No

matter how many times you call board.I2C() , it will return the same object. This is

called a singleton.

To be able to scan it, we need to lock the I2C down so the only thing accessing it is

the code. So next we include a loop that waits until I2C is locked and then continues

on to the scan function.

Last, we have the loop that runs the actual scan, i2c_scan() . Because I2C typically

refers to addresses in hex form, we've included this bit of code that formats the

results into hex format: [hex(device_address) for device_address in

i2c.scan()] .

Open the serial console to see the results! The code prints out an array of addresses.

We've connected the TSL2591 which has a 7-bit I2C address of 0x29. The result for

this sensor is I2C addresses found: ['0x29'] . If no addresses are returned, refer

back to the wiring diagrams to make sure you've wired up your sensor correctly.

I2C Sensor Data

Now we know for certain that our sensor is connected and ready to go. Let's find out

how to get the data from our sensor!

Copy and paste the code into code.py using your favorite editor, and save the file.

"""CircuitPython Essentials I2C sensor example using TSL2591"""

import time
import board

©Adafruit Industries Page 86 of 115

import adafruit_tsl2591

i2c = board.I2C()

Lock the I2C device before we try to scan

while not i2c.try_lock():
 pass
Print the addresses found once

print("I2C addresses found:", [hex(device_address) for device_address in
i2c.scan()])

Unlock I2C now that we're done scanning.

i2c.unlock()

Create library object on our I2C port

tsl2591 = adafruit_tsl2591.TSL2591(i2c)

Use the object to print the sensor readings

while True:
 print("Lux:", tsl2591.lux)
 time.sleep(0.5)

This code begins the same way as the scan code. We've included the scan code so

you have verification that your sensor is wired up correctly and is detected. It prints

the address once. After the scan, we unlock I2C with i2c_unlock() so we can use

the sensor for data.

We create our sensor object using the sensor library. We call it tsl2591 and provide

it the i2c object.

Then we have a simple loop that prints out the lux reading using the sensor object we

created. We add a time.sleep(1.0) , so it only prints once per second. Connect to

the serial console to see the results. Try shining a light on it to see the results change!

©Adafruit Industries Page 87 of 115

Where's my I2C?

On the SAMD21, SAMD51 and nRF52840, we have the flexibility of using a wide range

of pins for I2C. On the nRF52840, any pin can be used for I2C! Some chips, like the

ESP8266, require using bitbangio, but can also use any pins for I2C. There's some

other chips that may have fixed I2C pin.

The good news is you can use many but not all pins. Given the large number of SAMD

boards we have, its impossible to guarantee anything other than the labeled 'SDA'

and 'SCL'. So, if you want some other setup, or multiple I2C interfaces, how will you

find those pins? Easy! We've written a handy script.

All you need to do is copy this file to your board, rename it code.py, connect to the

serial console and check out the output! The results print out a nice handy list of SCL

and SDA pin pairs that you can use.

These are the results from an ItsyBitsy M0 Express. Your output may vary and it might

be very long. For more details about I2C and SERCOMs, check out our detailed guide

here (https://adafru.it/Ben).

"""CircuitPython Essentials I2C possible pin-pair identifying script"""

import board
import busio
from microcontroller import Pin

def is_hardware_I2C(scl, sda):
 try:
 p = busio.I2C(scl, sda)
 p.deinit()

 return True
 except ValueError:
 return False
 except RuntimeError:
 return True

©Adafruit Industries Page 88 of 115

file:///home/using-atsamd21-sercom-to-add-more-spi-i2c-serial-ports
file:///home/using-atsamd21-sercom-to-add-more-spi-i2c-serial-ports

def get_unique_pins():
 exclude = ['NEOPIXEL', 'APA102_MOSI', 'APA102_SCK']
 pins = [pin for pin in [
 getattr(board, p) for p in dir(board) if p not in exclude]
 if isinstance(pin, Pin)]
 unique = []
 for p in pins:
 if p not in unique:
 unique.append(p)

 return unique

for scl_pin in get_unique_pins():
 for sda_pin in get_unique_pins():
 if scl_pin is sda_pin:
 continue
 if is_hardware_I2C(scl_pin, sda_pin):
 print("SCL pin:", scl_pin, "\t SDA pin:", sda_pin)

CircuitPython HID Keyboard and Mouse

One of the things we baked into CircuitPython is 'HID' (Human Interface Device)

control - that means keyboard and mouse capabilities. This means your CircuitPython

board can act like a keyboard device and press key commands, or a mouse and have

it move the mouse pointer around and press buttons. This is really handy because

even if you cannot adapt your software to work with hardware, there's almost always

a keyboard interface - so if you want to have a capacitive touch interface for a game,

say, then keyboard emulation can often get you going really fast!

This section walks you through the code to create a keyboard or mouse emulator.

First we'll go through an example that uses pins on your board to emulate keyboard

input. Then, we will show you how to wire up a joystick to act as a mouse, and cover

the code needed to make that happen.

You'll need the adafruit_hid library folder if you don't already have it in your /lib folder!

You can get it from the CircuitPython Library Bundle (https://adafru.it/y8E). If you need

help installing the library, check out the CircuitPython Libraries page (https://adafru.it/

ABU).

CircuitPython Keyboard Emulator

Copy and paste the code into code.py using your favorite editor, and save the file.

"""CircuitPython Essentials HID Keyboard example"""

import time

import board
import digitalio
import usb_hid

©Adafruit Industries Page 89 of 115

https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/latest
file:///home/welcome-to-circuitpython/circuitpython-libraries

from adafruit_hid.keyboard import Keyboard
from adafruit_hid.keyboard_layout_us import KeyboardLayoutUS
from adafruit_hid.keycode import Keycode

A simple neat keyboard demo in CircuitPython

The pins we'll use, each will have an internal pullup

keypress_pins = [board.A1, board.A2]
Our array of key objects

key_pin_array = []
The Keycode sent for each button, will be paired with a control key

keys_pressed = [Keycode.A, "Hello World!\n"]
control_key = Keycode.SHIFT

The keyboard object!

time.sleep(1) # Sleep for a bit to avoid a race condition on some systems

keyboard = Keyboard(usb_hid.devices)
keyboard_layout = KeyboardLayoutUS(keyboard) # We're in the US :)

Make all pin objects inputs with pullups

for pin in keypress_pins:
 key_pin = digitalio.DigitalInOut(pin)
 key_pin.direction = digitalio.Direction.INPUT
 key_pin.pull = digitalio.Pull.UP
 key_pin_array.append(key_pin)

For most CircuitPython boards:

led = digitalio.DigitalInOut(board.LED)
For QT Py M0:

led = digitalio.DigitalInOut(board.SCK)

led.direction = digitalio.Direction.OUTPUT

print("Waiting for key pin...")

while True:
 # Check each pin

 for key_pin in key_pin_array:
 if not key_pin.value: # Is it grounded?
 i = key_pin_array.index(key_pin)
 print("Pin #%d is grounded." % i)

 # Turn on the red LED

 led.value = True

 while not key_pin.value:
 pass # Wait for it to be ungrounded!
 # "Type" the Keycode or string

 key = keys_pressed[i] # Get the corresponding Keycode or string
 if isinstance(key, str): # If it's a string...
 keyboard_layout.write(key) # ...Print the string

 else: # If it's not a string...
 keyboard.press(control_key, key) # "Press"...

 keyboard.release_all() # ..."Release"!

 # Turn off the red LED

 led.value = False

 time.sleep(0.01)

Connect pin A1 or A2 to ground, using a wire or alligator clip, then disconnect it to

send the key press "A" or the string "Hello world!"

©Adafruit Industries Page 90 of 115

This wiring example shows A1 and A2

connected to ground.

Remember, on Trinket, A1 and A2 are

labeled 2 and 0! On other boards, you

will have A1 and A2 labeled as expected.

Create the Objects and Variables

First, we assign some variables for later use. We create three arrays assigned to

variables: keypress_pins , key_pin_array , and keys_pressed . The first is the

pins we're going to use. The second is empty because we're going to fill it later. The

third is what we would like our "keyboard" to output - in this case the letter "A" and the

phrase, "Hello world!". We create our last variable assigned to control_key which

allows us to later apply the shift key to our keypress. We'll be using two keypresses,

but you can have up to six keypresses at once.

Next keyboard and keyboard_layout objects are created. We only have US right

now (if you make other layouts please submit a GitHub pull request!). The time.slee

p(1) avoids an error that can happen if the program gets run as soon as the board

gets plugged in, before the host computer finishes connecting to the board.

Then we take the pins we chose above, and create the pin objects, set the direction

and give them each a pullup. Then we apply the pin objects to key_pin_array so

we can use them later.

Next we set up the little red LED to so we can use it as a status light.

The last thing we do before we start our loop is print , "Waiting for key pin..." so you

know the code is ready and waiting!

The Main Loop

Inside the loop, we check each pin to see if the state has changed, i.e. you connected

the pin to ground. Once it changes, it prints, "Pin # grounded." to let you know the

ground state has been detected. Then we turn on the red LED. The code waits for the

©Adafruit Industries Page 91 of 115

https://learn.adafruit.com//assets/52710
https://learn.adafruit.com//assets/52710

state to change again, i.e. it waits for you to unground the pin by disconnecting the

wire attached to the pin from ground.

Then the code gets the corresponding keys pressed from our array. If you grounded

and ungrounded A1, the code retrieves the keypress a , if you grounded and

ungrounded A2, the code retrieves the string, "Hello world!"

If the code finds that it's retrieved a string, it prints the string, using the keyboard_la

yout to determine the keypresses. Otherwise, the code prints the keypress from the

control_key and the keypress "a", which result in "A". Then it calls keyboard.rele

ase_all() . You always want to call this soon after a keypress or you'll end up with a

stuck key which is really annoying!

Instead of using a wire to ground the pins, you can try wiring up buttons like we did in

CircuitPython Digital In & Out (https://adafru.it/Beo). Try altering the code to add more

pins for more keypress options!

Non-US Keyboard Layouts

The code above uses KeyboardLayoutUS. If you would like to emulate a non-US

keyboard, a number of other keyboard layout classes are available (https://adafru.it/

UYD).

CircuitPython Mouse Emulator

Copy and paste the code into code.py using your favorite editor, and save the file.

"""CircuitPython Essentials HID Mouse example"""

import time
import analogio
import board
import digitalio
import usb_hid
from adafruit_hid.mouse import Mouse

mouse = Mouse(usb_hid.devices)

x_axis = analogio.AnalogIn(board.A0)
y_axis = analogio.AnalogIn(board.A1)
select = digitalio.DigitalInOut(board.A2)
select.direction = digitalio.Direction.INPUT
select.pull = digitalio.Pull.UP

pot_min = 0.00
pot_max = 3.29
step = (pot_max - pot_min) / 20.0

def get_voltage(pin):

©Adafruit Industries Page 92 of 115

file:///home/circuitpython-essentials/circuitpython-digital-in-out
https://github.com/Neradoc/Circuitpython_Keyboard_Layouts

 return (pin.value * 3.3) / 65536

def steps(axis):
 """ Maps the potentiometer voltage range to 0-20 """

 return round((axis - pot_min) / step)

while True:
 x = get_voltage(x_axis)
 y = get_voltage(y_axis)

 if select.value is False:
 mouse.click(Mouse.LEFT_BUTTON)

 time.sleep(0.2) # Debounce delay

 if steps(x) > 11.0:
 # print(steps(x))

 mouse.move(x=1)
 if steps(x) < 9.0:
 # print(steps(x))

 mouse.move(x=-1)

 if steps(x) > 19.0:
 # print(steps(x))

 mouse.move(x=8)
 if steps(x) < 1.0:
 # print(steps(x))

 mouse.move(x=-8)

 if steps(y) > 11.0:
 # print(steps(y))

 mouse.move(y=-1)
 if steps(y) < 9.0:
 # print(steps(y))

 mouse.move(y=1)

 if steps(y) > 19.0:
 # print(steps(y))

 mouse.move(y=-8)
 if steps(y) < 1.0:
 # print(steps(y))

 mouse.move(y=8)

For this example, we've wired up a 2-axis thumb joystick with a select button. We use

this to emulate the mouse movement and the mouse left-button click. To wire up this

joytick:

Connect VCC on the joystick to the 3V on your board. Connect ground to groun

d.

Connect Xout on the joystick to pin A0 on your board.

Connect Yout on the joystick to pin A1 on your board.

Connect Sel on the joystick to pin A2 on your board.

Remember, Trinket's pins are labeled differently. Check the Trinket Pinouts page (http

s://adafru.it/AMd) to verify your wiring.

•

•

•

•

©Adafruit Industries Page 93 of 115

file:///home/adafruit-trinket-m0-circuitpython-arduino/pinouts#unique-pad-capabilities

To use this demo, simply move the joystick around. The mouse will move slowly if you

move the joystick a little off center, and more quickly if you move it as far as it goes.

Press down on the joystick to click the mouse. Awesome! Now let's take a look at the

code.

Create the Objects and Variables

First we create the mouse object.

Next, we set x_axis and y_axis to pins A0 and A1 . Then we set select to A2 ,

set it as input and give it a pullup.

The x and y axis on the joystick act like 2 potentiometers. We'll be using them just like

we did in CircuitPython Analog In (https://adafru.it/Bep). We set pot_min and pot_m

ax to be the minimum and maximum voltage read from the potentiometers. We

assign step = (pot_max - pot_min) / 20.0 to use in a helper function.

CircuitPython HID Mouse Helpers

First we have the get_voltage() helper so we can get the correct readings from

the potentiometers. Look familiar? We learned about it in Analog In (https://adafru.it/

Bep).

©Adafruit Industries Page 94 of 115

file:///home/circuitpython-essentials/circuitpython-analog-in
file:///home/circuitpython-essentials/circuitpython-analog-in#get-voltage-helper

Second, we have steps(axis) . To use it, you provide it with the axis you're reading.

This is where we're going to use the step variable we assigned earlier. The

potentiometer range is 0-3.29. This is a small range. It's even smaller with the joystick

because the joystick sits at the center of this range, 1.66, and the + and - of each axis

is above and below this number. Since we need to have thresholds in our code, we're

going to map that range of 0-3.29 to while numbers between 0-20.0 using this helper

function. That way we can simplify our code and use larger ranges for our thresholds

instead of trying to figure out tiny decimal number changes.

Main Loop

First we assign x and y to read the voltages from x_axis and y_axis .

Next, we check to see when the state of the select button is False . It defaults to Tr

ue when it is not pressed, so if the state is False , the button has been pressed.

When it's pressed, it sends the command to click the left mouse button. The time.s

leep(0.2) prevents it from reading multiple clicks when you've only clicked once.

Then we use the steps() function to set our mouse movement. There are two sets

of two if statements for each axis. Remember that 10 is the center step, as we've

mapped the range 0-20 . The first set for each axis says if the joystick moves 1 step

off center (left or right for the x axis and up or down for the y axis), to move the mouse

the appropriate direction by 1 unit. The second set for each axis says if the joystick is

moved to the lowest or highest step for each axis, to move the mouse the appropriate

direction by 8 units. That way you have the option to move the mouse slowly or

quickly!

To see what step the joystick is at when you're moving it, uncomment the print

statements by removing the # from the lines that look like # print(steps(x)) ,

and connecting to the serial console to see the output. Consider only uncommenting

one set at a time, or you end up with a huge amount of information scrolling very

quickly, which can be difficult to read!

CircuitPython Storage

CircuitPython-compatible microcontrollers show up as a CIRCUITPY drive when

plugged into your computer, allowing you to edit code directly on the board. Perhaps

For more detail check out the documentation at https://

circuitpython.readthedocs.io/projects/hid/en/latest/

©Adafruit Industries Page 95 of 115

https://circuitpython.readthedocs.io/projects/hid/en/latest/
https://circuitpython.readthedocs.io/projects/hid/en/latest/

you've wondered whether or not you can write data from CircuitPython directly to the

board to act as a data logger. The answer is yes!

The storage module in CircuitPython enables you to write code that allows

CircuitPython to write data to the CIRCUITPY drive. This process requires you to

include a boot.py file on your CIRCUITPY drive, along side your code.py file.

The boot.py file is special - the code within it is executed when CircuitPython starts

up, either from a hard reset or powering up the board. It is not run on soft reset, for

example, if you reload the board from the serial console or the REPL. This is in

contrast to the code within code.py, which is executed after CircuitPython is already

running.

The CIRCUITPY drive is typically writable by your computer; this is what allows you to

edit your code directly on the board. The reason you need a boot.py file is that you

have to set the filesystem to be read-only by your computer to allow it to be writable

by CircuitPython. This is because CircuitPython cannot write to the filesystem at the

same time as your computer. Doing so can lead to filesystem corruption and loss of all

content on the drive, so CircuitPython is designed to only allow one at at time.

Save the following as boot.py on your CIRCUITPY drive.

Click the Download Project Bundle button, open the resulting zip file, and copy the bo

ot.py file to your CIRCUITPY drive.

"""CircuitPython Essentials Storage logging boot.py file"""

import board
import digitalio
import storage

For Gemma M0, Trinket M0, Metro M0/M4 Express, ItsyBitsy M0/M4 Express

switch = digitalio.DigitalInOut(board.D2)

For Feather M0/M4 Express

switch = digitalio.DigitalInOut(board.D5)

You can only have either your computer edit the CIRCUITPY drive files, or

CircuitPython. You cannot have both write to the drive at the same time. (Bad

Things Will Happen so we do not allow you to do it!)

The filesystem will NOT automatically be set to read-only on creation of this file!

You'll still be able to edit files on CIRCUITPY after saving this boot.py.

©Adafruit Industries Page 96 of 115

For Circuit Playground Express, Circuit Playground Bluefruit

switch = digitalio.DigitalInOut(board.D7)

switch.direction = digitalio.Direction.INPUT
switch.pull = digitalio.Pull.UP

If the switch pin is connected to ground CircuitPython can write to the drive

storage.remount("/", switch.value)

The storage.remount() command has a readonly keyword argument. This

argument refers to the read/write state of CircuitPython. It does NOT refer to the read

/write state of your computer.

When the physical pin is connected to ground, it returns False . The readonly arg

ument in boot.py is set to the value of the pin. When the value=True , the

CIRCUITPY drive is read-only to CircuitPython (and writable by your computer). When

the value=False , the CIRCUITPY drive is writable by CircuitPython (an read-only by

your computer).

For Gemma M0, Trinket M0, Metro M0 Express, Metro M4 Express, ItsyBitsy M0

Express and ItsyBitsy M4 Express, no changes to the initial code are needed.

For Feather M0 Express and Feather M4 Express, comment out switch =

digitalio.DigitalInOut(board.D2) , and uncomment switch =

digitalio.DigitalInOut(board.D5) .

For Circuit Playground Express and Circuit Playground Bluefruit, comment out switch

= digitalio.DigitalInOut(board.D2) , and uncomment switch =

digitalio.DigitalInOut(board.D7) . Remember, D7 is the onboard slide switch,

so there's no extra wires or alligator clips needed.

On the Circuit Playground Express or Circuit Playground Bluefruit, the switch is in the

right position (closer to the ear icon on the silkscreen) it returns False , and the CIR

CUITPY drive will be writable by CircuitPython. If the switch is in the left position

(closer to the music icon on the silkscreen), it returns True , and the CIRCUITPY drive

will be writable by your computer.

The following is your new code.py. Copy and paste the code into code.py using your

favorite editor.

"""CircuitPython Essentials Storage logging example"""

import time

Remember: To "comment out" a line, put a # and a space before it. To

"uncomment" a line, remove the # + space from the beginning of the line.

©Adafruit Industries Page 97 of 115

import board
import digitalio
import microcontroller

For most CircuitPython boards:

led = digitalio.DigitalInOut(board.LED)
For QT Py M0:

led = digitalio.DigitalInOut(board.SCK)

led.switch_to_output()

try:
 with open("/temperature.txt", "a") as fp:
 while True:
 temp = microcontroller.cpu.temperature
 # do the C-to-F conversion here if you would like

 fp.write('{0:f}\n'.format(temp))

 fp.flush()

 led.value = not led.value
 time.sleep(1)

except OSError as e: # Typically when the filesystem isn't writeable...
 delay = 0.5 # ...blink the LED every half second.
 if e.args[0] == 28: # If the file system is full...
 delay = 0.25 # ...blink the LED faster!
 while True:
 led.value = not led.value
 time.sleep(delay)

Logging the Temperature

The way boot.py works is by checking to see if the pin you specified in the switch

setup in your code is connected to a ground pin. If it is, it changes the read-write state

of the file system, so the CircuitPython core can begin logging the temperature to the

board.

For help finding the correct pins, see the wiring diagrams and information in the Find

the Pins section of the CircuitPython Digital In & Out guide (https://adafru.it/Bes).

Instead of wiring up a switch, however, you'll be connecting the pin directly to ground

with alligator clips or jumper wires.

©Adafruit Industries Page 98 of 115

file:///home/adafruit-trinket-m0-circuitpython-arduino/circuitpython-digital-in-out#find-the-pins
file:///home/adafruit-trinket-m0-circuitpython-arduino/circuitpython-digital-in-out#find-the-pins

Once you copied the files to your board, eject it and unplug it from your computer. If

you're using your Circuit Playground Express, all you have to do is make sure the

switch is to the right. Otherwise, use alligator clips or jumper wires to connect the

chosen pin to ground. Then, plug your board back into your computer.

You will not be able to edit code on your CIRCUITPY drive anymore!

The red LED should blink once a second and you will see a new temperature.txt file

on CIRCUITPY.

boot.py only runs on first boot of the device, not if you re-load the serial console

with ctrl+D or if you save a file. You must EJECT the USB drive, then physically

press the reset button!

©Adafruit Industries Page 99 of 115

This file gets updated once per second, but you won't see data come in live. Instead,

when you're ready to grab the data, eject and unplug your board. For CPX, move the

switch to the left, otherwise remove the wire connecting the pin to ground. Now it will

be possible for you to write to the filesystem from your computer again, but it will not

be logging data.

We have a more detailed guide on this project available here: CPU Temperature

Logging with CircuitPython. (https://adafru.it/zuF) If you'd like more details, check it

out!

CircuitPython CPU Temp

There is a CPU temperature sensor built into every ATSAMD21, ATSAMD51 and

nRF52840 chips. CircuitPython makes it really simple to read the data from this

sensor. This works on the Adafruit CircuitPython boards it's built into the

microcontroller used for these boards.

The data is read using two simple commands. We're going to enter them in the REPL.

Plug in your board, connect to the serial console (https://adafru.it/Bec), and enter the

REPL (https://adafru.it/Awz). Then, enter the following commands into the REPL:

import microcontroller

microcontroller.cpu.temperature

©Adafruit Industries Page 100 of 115

file:///home/cpu-temperature-logging-with-circuit-python
file:///home/cpu-temperature-logging-with-circuit-python
file:///home/welcome-to-circuitpython/kattni-connecting-to-the-serial-console
file:///home/welcome-to-circuitpython/the-repl
file:///home/welcome-to-circuitpython/the-repl

That's it! You've printed the temperature in Celsius to the REPL. Note that it's not

exactly the ambient temperature and it's not super precise. But it's close!

If you'd like to print it out in Fahrenheit, use this simple formula: Celsius * (9/5) + 32.

It's super easy to do math using CircuitPython. Check it out!

CircuitPython Expectations

Always Run the Latest Version of
CircuitPython and Libraries

As we continue to develop CircuitPython and create new releases, we will stop

supporting older releases. You need to update to the latest CircuitPython (https://

adafru.it/Em8).

You need to download the CircuitPython Library Bundle that matches your version of

CircuitPython. Please update CircuitPython and then download the latest bundle (http

s://adafru.it/ENC).

As we release new versions of CircuitPython, we will stop providing the previous

bundles as automatically created downloads on the Adafruit CircuitPython Library

Note that the temperature sensor built into the nRF52840 has a resolution of

0.25 degrees Celsius, so any temperature you print out will be in 0.25 degree

increments.

As we continue to develop CircuitPython and create new releases, we will stop

supporting older releases. Visit https://circuitpython.org/downloads to download

the latest version of CircuitPython for your board. You must download the

CircuitPython Library Bundle that matches your version of CircuitPython. Please

update CircuitPython and then visit https://circuitpython.org/libraries to download

the latest Library Bundle.

©Adafruit Industries Page 101 of 115

https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://circuitpython.org/downloads
https://circuitpython.org/libraries

Bundle repo. If you must continue to use an earlier version, you can still download the

appropriate version of mpy-cross from the particular release of CircuitPython on the

CircuitPython repo and create your own compatible .mpy library files. However, it is

best to update to the latest for both CircuitPython and the library bundle.

I have to continue using CircuitPython 3.x
or 2.x, where can I find compatible
libraries?

We are no longer building or supporting the CircuitPython 2.x and 3.x library bundles.

We highly encourage you to update CircuitPython to the latest version (https://

adafru.it/Em8) and use the current version of the libraries (https://adafru.it/ENC).

However, if for some reason you cannot update, you can find the last available 2.x

build here (https://adafru.it/FJA) and the last available 3.x build here (https://adafru.it/

FJB).

Switching Between CircuitPython and
Arduino

Many of the CircuitPython boards also run Arduino. But how do you switch between

the two? Switching between CircuitPython and Arduino is easy.

If you're currently running Arduino and would like to start using CircuitPython, follow

the steps found in Welcome to CircuitPython: Installing CircuitPython (https://adafru.it

/Amd).

If you're currently running CircuitPython and would like to start using Arduino, plug in

your board, and then load your Arduino sketch. If there are any issues, you can

double tap the reset button to get into the bootloader and then try loading your

sketch. Always backup any files you're using with CircuitPython that you want to save

as they could be deleted.

That's it! It's super simple to switch between the two.

©Adafruit Industries Page 102 of 115

https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20190903/adafruit-circuitpython-bundle-2.x-mpy-20190903.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20190903/adafruit-circuitpython-bundle-2.x-mpy-20190903.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20190903/adafruit-circuitpython-bundle-3.x-mpy-20190903.zip
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython

The Difference Between Express And Non-
Express Boards

We often reference "Express" and "Non-Express" boards when discussing

CircuitPython. What does this mean?

Express refers to the inclusion of an extra 2MB flash chip on the board that provides

you with extra space for CircuitPython and your code. This means that we're able to

include more functionality in CircuitPython and you're able to do more with your code

on an Express board than you would on a non-Express board.

Express boards include Circuit Playground Express, ItsyBitsy M0 Express, Feather M0

Express, Metro M0 Express and Metro M4 Express.

Non-Express boards include Trinket M0, Gemma M0, QT Py, Feather M0 Basic, and

other non-Express Feather M0 variants.

Non-Express Boards: Gemma, Trinket, and
QT Py

CircuitPython runs nicely on the Gemma M0, Trinket M0, or QT Py M0 but there are

some constraints

Small Disk Space

Since we use the internal flash for disk, and that's shared with runtime code, its

limited! Only about 50KB of space.

No Audio or NVM

Part of giving up that FLASH for disk means we couldn't fit everything in. There is, at

this time, no support for hardware audio playpack or NVM 'eeprom'. Modules audio

io and bitbangio are not included. For that support, check out the Circuit

Playground Express or other Express boards.

However, I2C, UART, capacitive touch, NeoPixel, DotStar, PWM, analog in and out,

digital IO, logging storage, and HID do work! Check the CircuitPython Essentials for

examples of all of these.

©Adafruit Industries Page 103 of 115

Differences Between CircuitPython and
MicroPython

For the differences between CircuitPython and MicroPython, check out the CircuitPyt

hon documentation (https://adafru.it/Bvz).

Differences Between CircuitPython and
Python

Python (also known as CPython) is the language that MicroPython and CircuitPython

are based on. There are many similarities, but there are also many differences. This is

a list of a few of the differences.

Python Libraries

Python is advertised as having "batteries included", meaning that many standard

libraries are included. Unfortunately, for space reasons, many Python libraries are not

available. So for instance while we wish you could import numpy , numpy isn't

available (look for the ulab library for similar functions to numpy which works on

many microcontroller boards). So you may have to port some code over yourself!

Integers in CircuitPython

On the non-Express boards, integers can only be up to 31 bits long. Integers of

unlimited size are not supported. The largest positive integer that can be represented

is 2
30

-1, 1073741823, and the most negative integer possible is -2
30

, -1073741824.

As of CircuitPython 3.0, Express boards have arbitrarily long integers as in Python.

Floating Point Numbers and Digits of Precision for Floats in CircuitPython

Floating point numbers are single precision in CircuitPython (not double precision as

in Python). The largest floating point magnitude that can be represented is about

+/-3.4e38. The smallest magnitude that can be represented with full accuracy is about

+/-1.7e-38, though numbers as small as +/-5.6e-45 can be represented with reduced

accuracy.

©Adafruit Industries Page 104 of 115

https://circuitpython.readthedocs.io/en/latest/README.html#differences-from-micropython
https://circuitpython.readthedocs.io/en/latest/README.html#differences-from-micropython

CircuitPython's floats have 8 bits of exponent and 22 bits of mantissa (not 24 like

regular single precision floating point), which is about five or six decimal digits of

precision.

Differences between MicroPython and Python

For a more detailed list of the differences between CircuitPython and Python, you can

look at the MicroPython documentation. We keep up with MicroPython stable

releases, so check out the core 'differences' they document here. (https://adafru.it/

zwA)

CircuitPython Resetting

Most CircuitPython boards have a physical reset button. Pressing that button will

perform a hardware reset, similar to unplugging and plugging in the USB cable.

There's no code involved. So the reset button should always work.

The hardware reset button comes in to

play during the board boot sequence.

But what if you want to reset from your program? Maybe you want to just kick the

board to recover from some bad state. Or maybe you have some use case where you

want to reset into bootloader mode. We cover these various options here.

Soft Reset

To preform a soft reset, similar to hitting <CTRL><D> at the REPL prompt, use super

visor.reload() (https://adafru.it/RBS) . First, you need to import the superv

isor module:

import supervisor

©Adafruit Industries Page 105 of 115

http://docs.micropython.org/en/latest/pyboard/genrst/index.html
http://docs.micropython.org/en/latest/pyboard/genrst/index.html
https://learn.adafruit.com//assets/101265
https://learn.adafruit.com//assets/101265
https://circuitpython.readthedocs.io/en/latest/shared-bindings/supervisor/index.html#supervisor.reload
https://circuitpython.readthedocs.io/en/latest/shared-bindings/supervisor/index.html#supervisor.reload

And then at the point in your code where you want to reset, call reload() :

supervisor.reload()

Hard Reset

To perform a hard reset, similar to hitting the RESET button, use microcontroller.

reset() (https://adafru.it/RBT).

First you need to import the microcontroller module:

import microcontroller

And then at the point in your code where you want to reset, call reset() :

microcontroller.reset()

Reset Into Specific Mode

It is also possible to specify the mode to reset into. For example, you can reset into

bootloader mode if you want. To do this, use on_next_reset() to specify the mode

before calling reset() . The available options are defined in the microcontroller

.RunMode class:

NORMAL

SAFE_MODE

BOOTLOADER

For example, to reset into BOOTLOADER mode:

import microcontroller
microcontroller.on_next_reset(microcontroller.RunMode.BOOTLOADER)

microcontroller.reset()

This may result in file system corruption when connected to a host computer. Be

very careful when calling this! Make sure the device “Safely removed” on

Windows or “ejected” on Mac OSX and Linux.

•

•

•

©Adafruit Industries Page 106 of 115

https://circuitpython.readthedocs.io/en/latest/shared-bindings/microcontroller/index.html#microcontroller.reset
https://circuitpython.readthedocs.io/en/latest/shared-bindings/microcontroller/index.html#microcontroller.reset
https://circuitpython.readthedocs.io/en/latest/shared-bindings/microcontroller/index.html#microcontroller.reset
https://circuitpython.readthedocs.io/en/latest/shared-bindings/microcontroller/index.html#microcontroller.reset

More Info

supervisor module docs (https://adafru.it/RBS)

microcontroller module docs (https://adafru.it/RBT)

CircuitPython Libraries and Drivers

CircuitPython Libraries and Drivers (https://adafru.it/AYD)

CircuitPython Libraries

We have tons of CircuitPython libraries that can be used by microcontroller boards or

single board computers such as Raspberry Pi. Here's a quick listing that is

automatically generated

•

•

©Adafruit Industries Page 107 of 115

https://circuitpython.readthedocs.io/en/latest/shared-bindings/supervisor/index.html
https://circuitpython.readthedocs.io/en/latest/shared-bindings/supervisor/index.html
https://circuitpython.readthedocs.io/en/latest/shared-bindings/microcontroller/index.html#microcontroller.RunMode
https://circuitpython.readthedocs.io/en/latest/shared-bindings/microcontroller/index.html#microcontroller.RunMode
https://circuitpython.readthedocs.io/en/latest/docs/drivers.html

Adafruit CircuitPython Libraries

Here is a listing of current Adafruit CircuitPython Libraries.

There are 285 libraries available.

Drivers:

Adafruit CircuitPython 74HC595 (PyPi) (Docs)

Adafruit CircuitPython ADS1x15 (PyPi) (Docs)

Adafruit CircuitPython ADT7410 (PyPi) (Docs)

Adafruit CircuitPython ADXL34x (PyPi) (Docs)

Adafruit CircuitPython AHTx0 (PyPi) (Docs)

Adafruit CircuitPython AM2320 (PyPi) (Docs)

Adafruit CircuitPython AMG88xx (PyPi) (Docs)

Adafruit CircuitPython APDS9960 (PyPi) (Docs)

Adafruit CircuitPython AS726x (PyPi) (Docs)

Adafruit CircuitPython AS7341 (PyPi) (Docs)

Adafruit CircuitPython ATECC (PyPi) (Docs)

Adafruit CircuitPython AW9523 (PyPi) (Docs)

Adafruit CircuitPython BD3491FS (PyPi) (Docs)

•

•

•

•

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 108 of 115

https://github.com/adafruit/Adafruit_CircuitPython_74HC595.git
https://pypi.org/project/adafruit-circuitpython-74hc595
https://circuitpython.readthedocs.io/projects/74hc595/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_ADS1x15.git
https://pypi.org/project/adafruit-circuitpython-ads1x15
https://circuitpython.readthedocs.io/projects/ads1x15/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_ADT7410.git
https://pypi.org/project/adafruit-circuitpython-adt7410
https://circuitpython.readthedocs.io/projects/adt7410/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_ADXL34x.git
https://pypi.org/project/adafruit-circuitpython-adxl34x
https://circuitpython.readthedocs.io/projects/adxl34x/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_AHTx0.git
https://pypi.org/project/adafruit-circuitpython-ahtx0
https://circuitpython.readthedocs.io/projects/ahtx0/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_AM2320.git
https://pypi.org/project/adafruit-circuitpython-am2320
https://circuitpython.readthedocs.io/projects/am2320/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_AMG88xx.git
https://pypi.org/project/adafruit-circuitpython-amg88xx
https://circuitpython.readthedocs.io/projects/amg88xx/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_APDS9960.git
https://pypi.org/project/adafruit-circuitpython-apds9960
https://circuitpython.readthedocs.io/projects/apds9960/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_AS726x.git
https://pypi.org/project/adafruit-circuitpython-as726x
https://circuitpython.readthedocs.io/projects/as726x/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_AS7341.git
https://pypi.org/project/adafruit-circuitpython-as7341
https://circuitpython.readthedocs.io/projects/as7341/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_ATECC.git
https://pypi.org/project/adafruit-circuitpython-atecc
https://circuitpython.readthedocs.io/projects/atecc/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_AW9523.git
https://pypi.org/project/adafruit-circuitpython-aw9523
https://circuitpython.readthedocs.io/projects/aw9523/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_BD3491FS.git
https://pypi.org/project/adafruit-circuitpython-bd3491fs
https://circuitpython.readthedocs.io/projects/bd3491fs/en/latest/

Adafruit CircuitPython BH1750 (PyPi) (Docs)

Adafruit CircuitPython BME280 (PyPi) (Docs)

Adafruit CircuitPython BME680 (PyPi) (Docs)

Adafruit CircuitPython BMP280 (PyPi) (Docs)

Adafruit CircuitPython BMP3XX (PyPi) (Docs)

Adafruit CircuitPython BNO055 (PyPi) (Docs)

Adafruit CircuitPython BNO08X RVC (PyPi) (Docs)

Adafruit CircuitPython BNO08X (PyPi) (Docs)

Adafruit CircuitPython BluefruitSPI (PyPi) (Docs)

Adafruit CircuitPython CAP1188 (PyPi) (Docs)

Adafruit CircuitPython CCS811 (PyPi) (Docs)

Adafruit CircuitPython CLUE (Docs)

Adafruit CircuitPython CharLCD (PyPi) (Docs)

Adafruit CircuitPython CircuitPlayground (Docs)

Adafruit CircuitPython Crickit (PyPi) (Docs)

Adafruit CircuitPython DHT (PyPi) (Docs)

Adafruit CircuitPython DPS310 (PyPi) (Docs)

Adafruit CircuitPython DRV2605 (PyPi) (Docs)

Adafruit CircuitPython DS1307 (PyPi) (Docs)

Adafruit CircuitPython DS1841 (PyPi) (Docs)

Adafruit CircuitPython DS18X20 (PyPi) (Docs)

Adafruit CircuitPython DS2413 (PyPi) (Docs)

Adafruit CircuitPython DS3231 (PyPi) (Docs)

Adafruit CircuitPython DS3502 (PyPi) (Docs)

Adafruit CircuitPython DisplayIO SH1106 (PyPi) (Docs)

Adafruit CircuitPython DisplayIO SH1107 (PyPi) (Docs)

Adafruit CircuitPython DisplayIO SSD1305 (PyPi) (Docs)

Adafruit CircuitPython DisplayIO SSD1306 (PyPi) (Docs)

Adafruit CircuitPython DotStar (PyPi) (Docs)

Adafruit CircuitPython DymoScale (PyPi) (Docs)

Adafruit CircuitPython EMC2101 (PyPi) (Docs)

Adafruit CircuitPython EPD (PyPi) (Docs)

Adafruit CircuitPython ESP ATcontrol (PyPi) (Docs)

Adafruit CircuitPython ESP32SPI (PyPi) (Docs)

Adafruit CircuitPython FONA (PyPi) (Docs)

Adafruit CircuitPython FRAM (PyPi) (Docs)

Adafruit CircuitPython FXAS21002C (PyPi) (Docs)

Adafruit CircuitPython FXOS8700 (PyPi) (Docs)

Adafruit CircuitPython Fingerprint (PyPi) (Docs)

Adafruit CircuitPython FocalTouch (PyPi) (Docs)

Adafruit CircuitPython GPS (PyPi) (Docs)

Adafruit CircuitPython HCSR04 (PyPi) (Docs)

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 109 of 115

https://github.com/adafruit/Adafruit_CircuitPython_BH1750.git
https://pypi.org/project/adafruit-circuitpython-bh1750
https://circuitpython.readthedocs.io/projects/bh1750/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_BME280.git
https://pypi.org/project/adafruit-circuitpython-bme280
https://circuitpython.readthedocs.io/projects/bme280/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_BME680.git
https://pypi.org/project/adafruit-circuitpython-bme680
https://circuitpython.readthedocs.io/projects/bme680/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_BMP280.git
https://pypi.org/project/adafruit-circuitpython-bmp280
https://circuitpython.readthedocs.io/projects/bmp280/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_BMP3XX.git
https://pypi.org/project/adafruit-circuitpython-bmp3xx
https://circuitpython.readthedocs.io/projects/bmp3xx/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_BNO055.git
https://pypi.org/project/adafruit-circuitpython-bno055
https://circuitpython.readthedocs.io/projects/bno055/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_BNO08X_RVC.git
https://pypi.org/project/adafruit-circuitpython-bno08x-rvc
https://circuitpython.readthedocs.io/projects/bno08x_rvc/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_BNO08X.git
https://pypi.org/project/adafruit-circuitpython-bno08x
https://circuitpython.readthedocs.io/projects/bno08x/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_BluefruitSPI.git
https://pypi.org/project/adafruit-circuitpython-bluefruitspi
https://circuitpython.readthedocs.io/projects/bluefruitspi/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_CAP1188.git
https://pypi.org/project/adafruit-circuitpython-cap1188
https://circuitpython.readthedocs.io/projects/cap1188/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_CCS811.git
https://pypi.org/project/adafruit-circuitpython-ccs811
https://circuitpython.readthedocs.io/projects/ccs811/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_CLUE.git
https://circuitpython.readthedocs.io/projects/clue/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_CharLCD.git
https://pypi.org/project/adafruit-circuitpython-charlcd
https://circuitpython.readthedocs.io/projects/charlcd/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_CircuitPlayground.git
https://circuitpython.readthedocs.io/projects/circuitplayground/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_Crickit.git
https://pypi.org/project/adafruit-circuitpython-crickit
https://circuitpython.readthedocs.io/projects/crickit/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_DHT.git
https://pypi.org/project/adafruit-circuitpython-dht
https://circuitpython.readthedocs.io/projects/dht/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_DPS310.git
https://pypi.org/project/adafruit-circuitpython-dps310
https://circuitpython.readthedocs.io/projects/dps310/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_DRV2605.git
https://pypi.org/project/adafruit-circuitpython-drv2605
https://circuitpython.readthedocs.io/projects/drv2605/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_DS1307.git
https://pypi.org/project/adafruit-circuitpython-ds1307
https://circuitpython.readthedocs.io/projects/ds1307/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_DS1841.git
https://pypi.org/project/adafruit-circuitpython-ds1841
https://circuitpython.readthedocs.io/projects/ds1841/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_DS18X20.git
https://pypi.org/project/adafruit-circuitpython-ds18x20
https://circuitpython.readthedocs.io/projects/ds18x20/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_DS2413.git
https://pypi.org/project/adafruit-circuitpython-ds2413
https://circuitpython.readthedocs.io/projects/ds2413/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_DS3231.git
https://pypi.org/project/adafruit-circuitpython-ds3231
https://circuitpython.readthedocs.io/projects/ds3231/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_DS3502.git
https://pypi.org/project/adafruit-circuitpython-ds3502
https://circuitpython.readthedocs.io/projects/ds3502/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_DisplayIO_SH1106.git
https://pypi.org/project/adafruit-circuitpython-displayio-sh1106
https://circuitpython.readthedocs.io/projects/displayio_sh1106/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_DisplayIO_SH1107.git
https://pypi.org/project/adafruit-circuitpython-displayio-sh1107
https://circuitpython.readthedocs.io/projects/displayio-sh1107/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_DisplayIO_SSD1305.git
https://pypi.org/project/adafruit-circuitpython-displayio-ssd1305
https://circuitpython.readthedocs.io/projects/displayio_ssd1305/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_DisplayIO_SSD1306.git
https://pypi.org/project/adafruit-circuitpython-displayio-ssd1306
https://circuitpython.readthedocs.io/projects/displayio_ssd1306/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_DotStar.git
https://pypi.org/project/adafruit-circuitpython-dotstar
https://circuitpython.readthedocs.io/projects/dotstar/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_DymoScale.git
https://pypi.org/project/adafruit-circuitpython-dymoscale
https://circuitpython.readthedocs.io/projects/dymoscale/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_EMC2101.git
https://pypi.org/project/adafruit-circuitpython-emc2101
https://circuitpython.readthedocs.io/projects/emc2101/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_EPD.git
https://pypi.org/project/adafruit-circuitpython-epd
https://circuitpython.readthedocs.io/projects/epd/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_ESP_ATcontrol.git
https://pypi.org/project/adafruit-circuitpython-esp-atcontrol
https://circuitpython.readthedocs.io/projects/esp-atcontrol/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_ESP32SPI.git
https://pypi.org/project/adafruit-circuitpython-esp32spi
https://circuitpython.readthedocs.io/projects/esp32spi/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_FONA.git
https://pypi.org/project/adafruit-circuitpython-fona
https://circuitpython.readthedocs.io/projects/fona/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_FRAM.git
https://pypi.org/project/adafruit-circuitpython-fram
https://circuitpython.readthedocs.io/projects/fram/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_FXAS21002C.git
https://pypi.org/project/adafruit-circuitpython-fxas21002c
https://circuitpython.readthedocs.io/projects/fxas21002c/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_FXOS8700.git
https://pypi.org/project/adafruit-circuitpython-fxos8700
https://circuitpython.readthedocs.io/projects/fxos8700/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_Fingerprint.git
https://pypi.org/project/adafruit-circuitpython-fingerprint
https://circuitpython.readthedocs.io/projects/fingerprint/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_FocalTouch.git
https://pypi.org/project/adafruit-circuitpython-focaltouch
https://circuitpython.readthedocs.io/projects/focaltouch/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_GPS.git
https://pypi.org/project/adafruit-circuitpython-gps
https://circuitpython.readthedocs.io/projects/gps/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_HCSR04.git
https://pypi.org/project/adafruit-circuitpython-hcsr04
https://circuitpython.readthedocs.io/projects/hcsr04/en/latest/

Adafruit CircuitPython HT16K33 (PyPi) (Docs)

Adafruit CircuitPython HTS221 (PyPi) (Docs)

Adafruit CircuitPython HTU21D (PyPi) (Docs)

Adafruit CircuitPython HTU31D (PyPi) (Docs)

Adafruit CircuitPython HX8357 (PyPi) (Docs)

Adafruit CircuitPython ICM20X (PyPi) (Docs)

Adafruit CircuitPython IL0373 (PyPi) (Docs)

Adafruit CircuitPython IL0398 (PyPi) (Docs)

Adafruit CircuitPython IL91874 (PyPi) (Docs)

Adafruit CircuitPython ILI9341 (PyPi) (Docs)

Adafruit CircuitPython INA219 (PyPi) (Docs)

Adafruit CircuitPython INA260 (PyPi) (Docs)

Adafruit CircuitPython IRRemote (PyPi) (Docs)

Adafruit CircuitPython IS31FL3731 (PyPi) (Docs)

Adafruit CircuitPython IS31FL3741 (PyPi) (Docs)

Adafruit CircuitPython L3GD20 (PyPi) (Docs)

Adafruit CircuitPython LC709203F (PyPi) (Docs)

Adafruit CircuitPython LIDARLite (PyPi) (Docs)

Adafruit CircuitPython LIS2MDL (PyPi) (Docs)

Adafruit CircuitPython LIS331 (PyPi) (Docs)

Adafruit CircuitPython LIS3DH (PyPi) (Docs)

Adafruit CircuitPython LIS3MDL (PyPi) (Docs)

Adafruit CircuitPython LPS2X (PyPi) (Docs)

Adafruit CircuitPython LPS35HW (PyPi) (Docs)

Adafruit CircuitPython LSM303 Accel (PyPi) (Docs)

Adafruit CircuitPython LSM303DLH Mag (PyPi) (Docs)

Adafruit CircuitPython LSM303 (PyPi) (Docs)

Adafruit CircuitPython LSM6DS (PyPi) (Docs)

Adafruit CircuitPython LSM9DS0 (PyPi) (Docs)

Adafruit CircuitPython LSM9DS1 (PyPi) (Docs)

Adafruit CircuitPython LTR390 (PyPi) (Docs)

Adafruit CircuitPython MAX31855 (PyPi) (Docs)

Adafruit CircuitPython MAX31856 (PyPi) (Docs)

Adafruit CircuitPython MAX31865 (PyPi) (Docs)

Adafruit CircuitPython MAX7219 (PyPi) (Docs)

Adafruit CircuitPython MAX9744 (PyPi) (Docs)

Adafruit CircuitPython MCP230xx (PyPi) (Docs)

Adafruit CircuitPython MCP2515 (PyPi) (Docs)

Adafruit CircuitPython MCP3xxx (PyPi) (Docs)

Adafruit CircuitPython MCP4725 (PyPi) (Docs)

Adafruit CircuitPython MCP4728 (PyPi) (Docs)

Adafruit CircuitPython MCP9600 (PyPi) (Docs)

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 110 of 115

https://github.com/adafruit/Adafruit_CircuitPython_HT16K33.git
https://pypi.org/project/adafruit-circuitpython-ht16k33
https://circuitpython.readthedocs.io/projects/ht16k33/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_HTS221.git
https://pypi.org/project/adafruit-circuitpython-hts221
https://circuitpython.readthedocs.io/projects/hts221/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_HTU21D.git
https://pypi.org/project/adafruit-circuitpython-htu21d
https://circuitpython.readthedocs.io/projects/htu21d/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_HTU31D.git
https://pypi.org/project/adafruit-circuitpython-htu31d
https://circuitpython.readthedocs.io/projects/htu31d/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_HX8357.git
https://pypi.org/project/adafruit-circuitpython-hx8357
https://circuitpython.readthedocs.io/projects/hx8357/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_ICM20X.git
https://pypi.org/project/adafruit-circuitpython-icm20x
https://circuitpython.readthedocs.io/projects/icm20x/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_IL0373.git
https://pypi.org/project/adafruit-circuitpython-il0373
https://circuitpython.readthedocs.io/projects/il0373/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_IL0398.git
https://pypi.org/project/adafruit-circuitpython-il0398
https://circuitpython.readthedocs.io/projects/il0398/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_IL91874.git
https://pypi.org/project/adafruit-circuitpython-il91874
https://circuitpython.readthedocs.io/projects/il91874/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_ILI9341.git
https://pypi.org/project/adafruit-circuitpython-ili9341
https://circuitpython.readthedocs.io/projects/ili9341/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_INA219.git
https://pypi.org/project/adafruit-circuitpython-ina219
https://circuitpython.readthedocs.io/projects/ina219/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_INA260.git
https://pypi.org/project/adafruit-circuitpython-ina260
https://circuitpython.readthedocs.io/projects/ina260/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_IRRemote.git
https://pypi.org/project/adafruit-circuitpython-irremote
https://circuitpython.readthedocs.io/projects/irremote/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_IS31FL3731.git
https://pypi.org/project/adafruit-circuitpython-is31fl3731
https://circuitpython.readthedocs.io/projects/is31fl3731/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_IS31FL3741.git
https://pypi.org/project/adafruit-circuitpython-is31fl3741
https://circuitpython.readthedocs.io/projects/is31fl3741/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_L3GD20.git
https://pypi.org/project/adafruit-circuitpython-l3gd20
https://circuitpython.readthedocs.io/projects/l3gd20/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_LC709203F.git
https://pypi.org/project/adafruit-circuitpython-lc709203f
https://circuitpython.readthedocs.io/projects/lc709203f/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_LIDARLite.git
https://pypi.org/project/adafruit-circuitpython-lidarlite
https://circuitpython.readthedocs.io/projects/lidarlite/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_LIS2MDL.git
https://pypi.org/project/adafruit-circuitpython-lis2mdl
https://circuitpython.readthedocs.io/projects/lis2mdl/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_LIS331.git
https://pypi.org/project/adafruit-circuitpython-lis331
https://circuitpython.readthedocs.io/projects/lis331/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_LIS3DH.git
https://pypi.org/project/adafruit-circuitpython-lis3dh
https://circuitpython.readthedocs.io/projects/lis3dh/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_LIS3MDL.git
https://pypi.org/project/adafruit-circuitpython-lis3mdl
https://circuitpython.readthedocs.io/projects/lis3mdl/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_LPS2X.git
https://pypi.org/project/adafruit-circuitpython-lps2x
https://circuitpython.readthedocs.io/projects/lps2x/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_LPS35HW.git
https://pypi.org/project/adafruit-circuitpython-lps35hw
https://circuitpython.readthedocs.io/projects/lps35hw/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_LSM303_Accel.git
https://pypi.org/project/adafruit-circuitpython-lsm303-accel
https://circuitpython.readthedocs.io/projects/lsm303-accel/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_LSM303DLH_Mag.git
https://pypi.org/project/adafruit-circuitpython-lsm303dlh-mag
https://circuitpython.readthedocs.io/projects/lsm303dlh-mag/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_LSM303.git
https://pypi.org/project/adafruit-circuitpython-lsm303
https://circuitpython.readthedocs.io/projects/lsm303/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_LSM6DS.git
https://pypi.org/project/adafruit-circuitpython-lsm6ds
https://circuitpython.readthedocs.io/projects/lsm6dsox/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_LSM9DS0.git
https://pypi.org/project/adafruit-circuitpython-lsm9ds0
https://circuitpython.readthedocs.io/projects/lsm9ds0/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_LSM9DS1.git
https://pypi.org/project/adafruit-circuitpython-lsm9ds1
https://circuitpython.readthedocs.io/projects/lsm9ds1/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_LTR390.git
https://pypi.org/project/adafruit-circuitpython-ltr390
https://circuitpython.readthedocs.io/projects/ltr390/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_MAX31855.git
https://pypi.org/project/adafruit-circuitpython-max31855
https://circuitpython.readthedocs.io/projects/max31855/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_MAX31856.git
https://pypi.org/project/adafruit-circuitpython-max31856
https://circuitpython.readthedocs.io/projects/max31856/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_MAX31865.git
https://pypi.org/project/adafruit-circuitpython-max31865
https://circuitpython.readthedocs.io/projects/max31865/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_MAX7219.git
https://pypi.org/project/adafruit-circuitpython-max7219
https://circuitpython.readthedocs.io/projects/max7219/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_MAX9744.git
https://pypi.org/project/adafruit-circuitpython-max9744
https://circuitpython.readthedocs.io/projects/max9744/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_MCP230xx.git
https://pypi.org/project/adafruit-circuitpython-mcp230xx
https://circuitpython.readthedocs.io/projects/mcp230xx/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_MCP2515.git
https://pypi.org/project/adafruit-circuitpython-mcp2515
https://circuitpython.readthedocs.io/projects/mcp2515/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_MCP3xxx.git
https://pypi.org/project/adafruit-circuitpython-mcp3xxx
https://circuitpython.readthedocs.io/projects/mcp3xxx/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_MCP4725.git
https://pypi.org/project/adafruit-circuitpython-mcp4725
https://circuitpython.readthedocs.io/projects/mcp4725/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_MCP4728.git
https://pypi.org/project/adafruit-circuitpython-mcp4728
https://circuitpython.readthedocs.io/projects/mcp4728/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_MCP9600.git
https://pypi.org/project/adafruit-circuitpython-mcp9600
https://circuitpython.readthedocs.io/projects/mcp9600/en/latest/

Adafruit CircuitPython MCP9808 (PyPi) (Docs)

Adafruit CircuitPython MLX90393 (PyPi) (Docs)

Adafruit CircuitPython MLX90395 (PyPi) (Docs)

Adafruit CircuitPython MLX90614 (PyPi) (Docs)

Adafruit CircuitPython MLX90640 (PyPi) (Docs)

Adafruit CircuitPython MMA8451 (PyPi) (Docs)

Adafruit CircuitPython MONSTERM4SK (Docs)

Adafruit CircuitPython MPL115A2 (PyPi) (Docs)

Adafruit CircuitPython MPL3115A2 (PyPi) (Docs)

Adafruit CircuitPython MPR121 (PyPi) (Docs)

Adafruit CircuitPython MPRLS (PyPi) (Docs)

Adafruit CircuitPython MPU6050 (PyPi) (Docs)

Adafruit CircuitPython MS8607 (PyPi) (Docs)

Adafruit CircuitPython MSA301 (PyPi) (Docs)

Adafruit CircuitPython MatrixKeypad (PyPi) (Docs)

Adafruit CircuitPython NeoPixel SPI (PyPi) (Docs)

Adafruit CircuitPython NeoPixel (PyPi) (Docs)

Adafruit CircuitPython NeoTrellis (PyPi) (Docs)

Adafruit CircuitPython Nunchuk (Docs)

Adafruit CircuitPython OV2640 (Docs)

Adafruit CircuitPython OV7670 (Docs)

Adafruit CircuitPython PCA9685 (PyPi) (Docs)

Adafruit CircuitPython PCD8544 (PyPi) (Docs)

Adafruit CircuitPython PCF8523 (PyPi) (Docs)

Adafruit CircuitPython PCF8563 (PyPi) (Docs)

Adafruit CircuitPython PCF8591 (PyPi) (Docs)

Adafruit CircuitPython PCT2075 (PyPi) (Docs)

Adafruit CircuitPython PM25 (PyPi) (Docs)

Adafruit CircuitPython PN532 (PyPi) (Docs)

Adafruit CircuitPython Pixie (PyPi) (Docs)

Adafruit CircuitPython PyPortal (Docs)

Adafruit CircuitPython RA8875 (PyPi) (Docs)

Adafruit CircuitPython RFM69 (PyPi) (Docs)

Adafruit CircuitPython RFM9x (PyPi) (Docs)

Adafruit CircuitPython RGB Display (PyPi) (Docs)

Adafruit CircuitPython RPLIDAR (PyPi) (Docs)

Adafruit CircuitPython RockBlock (PyPi) (Docs)

Adafruit CircuitPython SCD30 (PyPi) (Docs)

Adafruit CircuitPython SCD4X (PyPi) (Docs)

Adafruit CircuitPython SD (PyPi) (Docs)

Adafruit CircuitPython SGP30 (PyPi) (Docs)

Adafruit CircuitPython SGP40 (PyPi) (Docs)

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 111 of 115

https://github.com/adafruit/Adafruit_CircuitPython_MCP9808.git
https://pypi.org/project/adafruit-circuitpython-mcp9808
https://circuitpython.readthedocs.io/projects/mcp9808/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_MLX90393.git
https://pypi.org/project/adafruit-circuitpython-mlx90393
https://circuitpython.readthedocs.io/projects/mlx90393/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_MLX90395.git
https://pypi.org/project/adafruit-circuitpython-mlx90395
https://circuitpython.readthedocs.io/projects/mlx90395/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_MLX90614.git
https://pypi.org/project/adafruit-circuitpython-mlx90614
https://circuitpython.readthedocs.io/projects/mlx90614/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_MLX90640.git
https://pypi.org/project/adafruit-circuitpython-mlx90640
https://circuitpython.readthedocs.io/projects/mlx90640/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_MMA8451.git
https://pypi.org/project/adafruit-circuitpython-mma8451
https://circuitpython.readthedocs.io/projects/mma8451/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_MONSTERM4SK.git
https://circuitpython.readthedocs.io/projects/monsterm4sk/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_MPL115A2.git
https://pypi.org/project/adafruit-circuitpython-mpl115a2
https://circuitpython.readthedocs.io/projects/mpl115a2/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_MPL3115A2.git
https://pypi.org/project/adafruit-circuitpython-mpl3115a2
https://circuitpython.readthedocs.io/projects/mpl3115a2/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_MPR121.git
https://pypi.org/project/adafruit-circuitpython-mpr121
https://circuitpython.readthedocs.io/projects/mpr121/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_MPRLS.git
https://pypi.org/project/adafruit-circuitpython-mprls
https://circuitpython.readthedocs.io/projects/mprls/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_MPU6050.git
https://pypi.org/project/adafruit-circuitpython-mpu6050
https://circuitpython.readthedocs.io/projects/mpu6050/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_MS8607.git
https://pypi.org/project/adafruit-circuitpython-ms8607
https://circuitpython.readthedocs.io/projects/ms8607/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_MSA301.git
https://pypi.org/project/adafruit-circuitpython-msa301
https://circuitpython.readthedocs.io/projects/msa301/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_MatrixKeypad.git
https://pypi.org/project/adafruit-circuitpython-matrixkeypad
https://circuitpython.readthedocs.io/projects/matrixkeypad/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_NeoPixel_SPI.git
https://pypi.org/project/adafruit-circuitpython-neopixel-spi
https://circuitpython.readthedocs.io/projects/neopixel_spi/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_NeoPixel.git
https://pypi.org/project/adafruit-circuitpython-neopixel
https://circuitpython.readthedocs.io/projects/neopixel/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_NeoTrellis
https://pypi.org/project/adafruit-circuitpython-neotrellis
https://circuitpython.readthedocs.io/projects/neotrellis/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_Nunchuk.git
https://circuitpython.readthedocs.io/projects/nunchuk/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_OV2640.git
https://circuitpython.readthedocs.io/projects/ov2640/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_OV7670
https://circuitpython.readthedocs.io/projects/ov7670/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_PCA9685.git
https://pypi.org/project/adafruit-circuitpython-pca9685
https://circuitpython.readthedocs.io/projects/pca9685/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_PCD8544.git
https://pypi.org/project/adafruit-circuitpython-pcd8544
https://circuitpython.readthedocs.io/projects/pcd8544/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_PCF8523.git
https://pypi.org/project/adafruit-circuitpython-pcf8523
https://circuitpython.readthedocs.io/projects/pcf8523/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_PCF8563.git
https://pypi.org/project/adafruit-circuitpython-pcf8563
https://circuitpython.readthedocs.io/projects/pcf8563/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_PCF8591.git
https://pypi.org/project/adafruit-circuitpython-pcf8591
https://circuitpython.readthedocs.io/projects/pcf8591/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_PCT2075.git
https://pypi.org/project/adafruit-circuitpython-pct2075
https://circuitpython.readthedocs.io/projects/pct2075/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_PM25.git
https://pypi.org/project/adafruit-circuitpython-pm25
https://circuitpython.readthedocs.io/projects/pm25/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_PN532.git
https://pypi.org/project/adafruit-circuitpython-pn532
https://circuitpython.readthedocs.io/projects/pn532/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_Pixie.git
https://pypi.org/project/adafruit-circuitpython-pixie
https://circuitpython.readthedocs.io/projects/pixie/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_PyPortal.git
https://circuitpython.readthedocs.io/projects/pyportal/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_RA8875.git
https://pypi.org/project/adafruit-circuitpython-ra8875
https://circuitpython.readthedocs.io/projects/ra8875/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_RFM69.git
https://pypi.org/project/adafruit-circuitpython-rfm69
https://circuitpython.readthedocs.io/projects/rfm69/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_RFM9x.git
https://pypi.org/project/adafruit-circuitpython-rfm9x
https://circuitpython.readthedocs.io/projects/rfm9x/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_RGB_Display.git
https://pypi.org/project/adafruit-circuitpython-rgb-display
https://circuitpython.readthedocs.io/projects/rgb_display/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_RPLIDAR.git
https://pypi.org/project/adafruit-circuitpython-rplidar
https://circuitpython.readthedocs.io/projects/rplidar/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_RockBlock.git
https://pypi.org/project/adafruit-circuitpython-rockblock
https://circuitpython.readthedocs.io/projects/rockblock/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_SCD30.git
https://pypi.org/project/adafruit-circuitpython-scd30
https://circuitpython.readthedocs.io/projects/scd30/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_SCD4X.git
https://pypi.org/project/adafruit-circuitpython-scd4x
https://circuitpython.readthedocs.io/projects/scd4x/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_SD.git
https://pypi.org/project/adafruit-circuitpython-sd
https://circuitpython.readthedocs.io/projects/sd/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_SGP30.git
https://pypi.org/project/adafruit-circuitpython-sgp30
https://circuitpython.readthedocs.io/projects/sgp30/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_SGP40.git
https://pypi.org/project/adafruit-circuitpython-sgp40
https://circuitpython.readthedocs.io/projects/sgp40/en/latest/

Adafruit CircuitPython SHT31D (PyPi) (Docs)

Adafruit CircuitPython SHT4x (PyPi) (Docs)

Adafruit CircuitPython SHTC3 (PyPi) (Docs)

Adafruit CircuitPython SI4713 (PyPi) (Docs)

Adafruit CircuitPython SI5351 (PyPi) (Docs)

Adafruit CircuitPython SI7021 (PyPi) (Docs)

Adafruit CircuitPython SSD1305 (PyPi) (Docs)

Adafruit CircuitPython SSD1306 (PyPi) (Docs)

Adafruit CircuitPython SSD1322 (PyPi) (Docs)

Adafruit CircuitPython SSD1325 (PyPi) (Docs)

Adafruit CircuitPython SSD1327 (PyPi) (Docs)

Adafruit CircuitPython SSD1331 (PyPi) (Docs)

Adafruit CircuitPython SSD1351 (PyPi) (Docs)

Adafruit CircuitPython SSD1608 (PyPi) (Docs)

Adafruit CircuitPython SSD1675 (PyPi) (Docs)

Adafruit CircuitPython SSD1680 (PyPi) (Docs)

Adafruit CircuitPython SSD1681 (PyPi) (Docs)

Adafruit CircuitPython ST7565 (PyPi) (Docs)

Adafruit CircuitPython ST7735R (PyPi) (Docs)

Adafruit CircuitPython ST7735 (PyPi) (Docs)

Adafruit CircuitPython ST7789 (PyPi) (Docs)

Adafruit CircuitPython STMPE610 (PyPi) (Docs)

Adafruit CircuitPython Seesaw (PyPi) (Docs)

Adafruit CircuitPython SharpMemoryDisplay (PyPi) (Docs)

Adafruit CircuitPython TC74 (PyPi) (Docs)

Adafruit CircuitPython TCA9548A (PyPi) (Docs)

Adafruit CircuitPython TCS34725 (PyPi) (Docs)

Adafruit CircuitPython TFmini (PyPi) (Docs)

Adafruit CircuitPython TLA202X (PyPi) (Docs)

Adafruit CircuitPython TLC5947 (PyPi) (Docs)

Adafruit CircuitPython TLC59711 (PyPi) (Docs)

Adafruit CircuitPython TLV493D (PyPi) (Docs)

Adafruit CircuitPython TMP006 (PyPi) (Docs)

Adafruit CircuitPython TMP007 (PyPi) (Docs)

Adafruit CircuitPython TMP117 (PyPi) (Docs)

Adafruit CircuitPython TPA2016 (PyPi) (Docs)

Adafruit CircuitPython TSL2561 (PyPi) (Docs)

Adafruit CircuitPython TSL2591 (PyPi) (Docs)

Adafruit CircuitPython Thermal Printer (PyPi) (Docs)

Adafruit CircuitPython Thermistor (PyPi) (Docs)

Adafruit CircuitPython Touchscreen (PyPi) (Docs)

Adafruit CircuitPython TrellisM4 (PyPi) (Docs)

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 112 of 115

https://github.com/adafruit/Adafruit_CircuitPython_SHT31D.git
https://pypi.org/project/adafruit-circuitpython-sht31d
https://circuitpython.readthedocs.io/projects/sht31d/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_SHT4x.git
https://pypi.org/project/adafruit-circuitpython-sht4x
https://circuitpython.readthedocs.io/projects/sht4x/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_SHTC3.git
https://pypi.org/project/adafruit-circuitpython-shtc3
https://circuitpython.readthedocs.io/projects/shtc3/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_SI4713.git
https://pypi.org/project/adafruit-circuitpython-si4713
https://circuitpython.readthedocs.io/projects/si4713/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_SI5351.git
https://pypi.org/project/adafruit-circuitpython-si5351
https://circuitpython.readthedocs.io/projects/si5351/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_SI7021.git
https://pypi.org/project/adafruit-circuitpython-si7021
https://circuitpython.readthedocs.io/projects/si7021/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_SSD1305.git
https://pypi.org/project/adafruit-circuitpython-ssd1305
https://circuitpython.readthedocs.io/projects/ssd1305/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_SSD1306.git
https://pypi.org/project/adafruit-circuitpython-ssd1306
https://circuitpython.readthedocs.io/projects/ssd1306/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_SSD1322.git
https://pypi.org/project/adafruit-circuitpython-ssd1322
https://circuitpython.readthedocs.io/projects/ssd1322/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_SSD1325.git
https://pypi.org/project/adafruit-circuitpython-ssd1325
https://circuitpython.readthedocs.io/projects/ssd1325/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_SSD1327.git
https://pypi.org/project/adafruit-circuitpython-ssd1327
https://circuitpython.readthedocs.io/projects/ssd1327/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_SSD1331.git
https://pypi.org/project/adafruit-circuitpython-ssd1331
https://circuitpython.readthedocs.io/projects/ssd1331/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_SSD1351.git
https://pypi.org/project/adafruit-circuitpython-ssd1351
https://circuitpython.readthedocs.io/projects/ssd1351/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_SSD1608.git
https://pypi.org/project/adafruit-circuitpython-ssd1608
https://circuitpython.readthedocs.io/projects/ssd1608/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_SSD1675.git
https://pypi.org/project/adafruit-circuitpython-ssd1675
https://circuitpython.readthedocs.io/projects/ssd1675/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_SSD1680.git
https://pypi.org/project/adafruit-circuitpython-ssd1680
https://circuitpython.readthedocs.io/projects/ssd1680/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_SSD1681.git
https://pypi.org/project/adafruit-circuitpython-ssd1681
https://circuitpython.readthedocs.io/projects/ssd1681/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_ST7565.git
https://pypi.org/project/adafruit-circuitpython-st7565
https://circuitpython.readthedocs.io/projects/st7565/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_ST7735R.git
https://pypi.org/project/adafruit-circuitpython-st7735r
https://circuitpython.readthedocs.io/projects/st7735r/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_ST7735.git
https://pypi.org/project/adafruit-circuitpython-st7735
https://circuitpython.readthedocs.io/projects/st7735/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_ST7789.git
https://pypi.org/project/adafruit-circuitpython-st7789
https://circuitpython.readthedocs.io/projects/st7789/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_STMPE610.git
https://pypi.org/project/adafruit-circuitpython-stmpe610
https://circuitpython.readthedocs.io/projects/stmpe610/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_Seesaw.git
https://pypi.org/project/adafruit-circuitpython-seesaw
https://circuitpython.readthedocs.io/projects/seesaw/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_SharpMemoryDisplay.git
https://pypi.org/project/adafruit-circuitpython-sharpmemorydisplay
https://circuitpython.readthedocs.io/projects/sharpmemorydisplay/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_TC74.git
https://pypi.org/project/adafruit-circuitpython-tc74
https://circuitpython.readthedocs.io/projects/tc74/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_TCA9548A.git
https://pypi.org/project/adafruit-circuitpython-tca9548a
https://circuitpython.readthedocs.io/projects/tca9548a/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_TCS34725.git
https://pypi.org/project/adafruit-circuitpython-tcs34725
https://circuitpython.readthedocs.io/projects/tcs34725/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_TFmini.git
https://pypi.org/project/adafruit-circuitpython-tfmini
https://circuitpython.readthedocs.io/projects/tfmini/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_TLA202X.git
https://pypi.org/project/adafruit-circuitpython-tla202x
https://circuitpython.readthedocs.io/projects/tla202x/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_TLC5947.git
https://pypi.org/project/adafruit-circuitpython-tlc5947
https://circuitpython.readthedocs.io/projects/tlc5947/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_TLC59711.git
https://pypi.org/project/adafruit-circuitpython-tlc59711
https://circuitpython.readthedocs.io/projects/tlc59711/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_TLV493D.git
https://pypi.org/project/adafruit-circuitpython-tlv493d
https://circuitpython.readthedocs.io/projects/tlv493d/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_TMP006.git
https://pypi.org/project/adafruit-circuitpython-tmp006
https://circuitpython.readthedocs.io/projects/tmp006/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_TMP007.git
https://pypi.org/project/adafruit-circuitpython-tmp007
https://circuitpython.readthedocs.io/projects/tmp007/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_TMP117
https://pypi.org/project/adafruit-circuitpython-tmp117
https://circuitpython.readthedocs.io/projects/tmp117/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_TPA2016.git
https://pypi.org/project/adafruit-circuitpython-tpa2016
https://circuitpython.readthedocs.io/projects/tpa2016/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_TSL2561.git
https://pypi.org/project/adafruit-circuitpython-tsl2561
https://circuitpython.readthedocs.io/projects/tsl2561/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_TSL2591.git
https://pypi.org/project/adafruit-circuitpython-tsl2591
https://circuitpython.readthedocs.io/projects/tsl2591/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_Thermal_Printer.git
https://pypi.org/project/adafruit-circuitpython-thermal-printer
https://adafruit_circuitpython_thermal_printer.readthedocs.io/
https://github.com/adafruit/Adafruit_CircuitPython_Thermistor.git
https://pypi.org/project/adafruit-circuitpython-thermistor
https://circuitpython.readthedocs.io/projects/thermistor/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_Touchscreen.git
https://pypi.org/project/adafruit-circuitpython-touchscreen
https://circuitpython.readthedocs.io/projects/touchscreen/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_TrellisM4.git
https://pypi.org/project/adafruit-circuitpython-trellism4
https://circuitpython.readthedocs.io/projects/trellism4/en/latest/

Adafruit CircuitPython Trellis (PyPi) (Docs)

Adafruit CircuitPython UC8151D (PyPi) (Docs)

Adafruit CircuitPython US100 (PyPi) (Docs)

Adafruit CircuitPython VC0706 (PyPi) (Docs)

Adafruit CircuitPython VCNL4010 (PyPi) (Docs)

Adafruit CircuitPython VCNL4040 (PyPi) (Docs)

Adafruit CircuitPython VEML6070 (PyPi) (Docs)

Adafruit CircuitPython VEML6075 (PyPi) (Docs)

Adafruit CircuitPython VEML7700 (PyPi) (Docs)

Adafruit CircuitPython VL53L0X (PyPi) (Docs)

Adafruit CircuitPython VL6180X (PyPi) (Docs)

Adafruit CircuitPython VS1053 (PyPi) (Docs)

Adafruit CircuitPython WS2801 (PyPi) (Docs)

Adafruit CircuitPython Wiznet5k (PyPi) (Docs)

Helpers:

Adafruit CircuitPython AVRprog (PyPi) (Docs)

Adafruit CircuitPython AWS IOT (PyPi) (Docs)

Adafruit CircuitPython AdafruitIO (PyPi) (Docs)

Adafruit CircuitPython AirLift (PyPi) (Docs)

Adafruit CircuitPython AzureIoT (PyPi) (Docs)

Adafruit CircuitPython BLE Adafruit (PyPi) (Docs)

Adafruit CircuitPython BLE Apple Media (PyPi) (Docs)

Adafruit CircuitPython BLE Apple Notification Center (PyPi) (Docs)

Adafruit CircuitPython BLE BerryMed Pulse Oximeter (PyPi) (Docs)

Adafruit CircuitPython BLE BroadcastNet (PyPi) (Docs)

Adafruit CircuitPython BLE Cycling Speed and Cadence (PyPi) (Docs)

Adafruit CircuitPython BLE Eddystone (PyPi) (Docs)

Adafruit CircuitPython BLE Heart Rate (PyPi) (Docs)

Adafruit CircuitPython BLE LYWSD03MMC (PyPi) (Docs)

Adafruit CircuitPython BLE MIDI (PyPi) (Docs)

Adafruit CircuitPython BLE Magic Light (PyPi) (Docs)

Adafruit CircuitPython BLE Radio (PyPi) (Docs)

Adafruit CircuitPython BLE iBBQ (PyPi) (Docs)

Adafruit CircuitPython BLE (PyPi) (Docs)

Adafruit CircuitPython BitbangIO (PyPi) (Docs)

Adafruit CircuitPython Bitmap Font (PyPi) (Docs)

Adafruit CircuitPython BitmapSaver (PyPi) (Docs)

Adafruit CircuitPython BluefruitConnect (PyPi) (Docs)

Adafruit CircuitPython BoardTest (Docs)

Adafruit CircuitPython BusDevice (PyPi) (Docs)

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 113 of 115

https://github.com/adafruit/Adafruit_CircuitPython_Trellis.git
https://pypi.org/project/adafruit-circuitpython-trellis
https://circuitpython.readthedocs.io/projects/trellis/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_UC8151D.git
https://pypi.org/project/adafruit-circuitpython-uc8151d
https://circuitpython.readthedocs.io/projects/uc8151d/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_US100.git
https://pypi.org/project/adafruit-circuitpython-us100
https://circuitpython.readthedocs.io/projects/us100/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_VC0706.git
https://pypi.org/project/adafruit-circuitpython-vc0706
https://circuitpython.readthedocs.io/projects/vc0706/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_VCNL4010.git
https://pypi.org/project/adafruit-circuitpython-vcnl4010
https://circuitpython.readthedocs.io/projects/vcnl4010/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_VCNL4040.git
https://pypi.org/project/adafruit-circuitpython-vcnl4040
https://circuitpython.readthedocs.io/projects/vcnl4040/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_VEML6070.git
https://pypi.org/project/adafruit-circuitpython-veml6070
https://circuitpython.readthedocs.io/projects/veml6070/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_VEML6075.git
https://pypi.org/project/adafruit-circuitpython-veml6075
https://circuitpython.readthedocs.io/projects/veml6075/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_VEML7700.git
https://pypi.org/project/adafruit-circuitpython-veml7700
https://circuitpython.readthedocs.io/projects/veml7700/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_VL53L0X.git
https://pypi.org/project/adafruit-circuitpython-vl53l0x
https://circuitpython.readthedocs.io/projects/vl53l0x/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_VL6180X.git
https://pypi.org/project/adafruit-circuitpython-vl6180x
https://circuitpython.readthedocs.io/projects/vl6180x/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_VS1053.git
https://pypi.org/project/adafruit-circuitpython-vs1053
https://circuitpython.readthedocs.io/projects/vs1053/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_WS2801.git
https://pypi.org/project/adafruit-circuitpython-ws2801
https://circuitpython.readthedocs.io/projects/ws2801/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_Wiznet5k.git
https://pypi.org/project/adafruit-circuitpython-wiznet5k
https://circuitpython.readthedocs.io/projects/wiznet5k/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_AVRprog.git
https://pypi.org/project/adafruit-circuitpython-avrprog
https://circuitpython.readthedocs.io/projects/avrprog/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_AWS_IOT.git
https://pypi.org/project/adafruit-circuitpython-aws-iot
https://circuitpython.readthedocs.io/projects/aws_iot/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_AdafruitIO.git
https://pypi.org/project/adafruit-circuitpython-adafruitio
https://circuitpython.readthedocs.io/projects/adafruitio/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_AirLift.git
https://pypi.org/project/adafruit-circuitpython-airlift
https://circuitpython.readthedocs.io/projects/airlift/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_AzureIoT.git
https://pypi.org/project/adafruit-circuitpython-azureiot
https://circuitpython.readthedocs.io/projects/azureiot/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_BLE_Adafruit.git
https://pypi.org/project/adafruit-circuitpython-ble-adafruit
https://circuitpython.readthedocs.io/projects/ble_adafruit/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_BLE_Apple_Media.git
https://pypi.org/project/adafruit-circuitpython-ble-apple-media
https://circuitpython.readthedocs.io/projects/ble_apple_media/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_BLE_Apple_Notification_Center.git
https://pypi.org/project/adafruit-circuitpython-ble-apple-notification-center
https://circuitpython.readthedocs.io/projects/ble_apple_notification_center/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_BLE_BerryMed_Pulse_Oximeter.git
https://pypi.org/project/adafruit-circuitpython-ble-berrymed-pulse-oximeter
https://circuitpython.readthedocs.io/projects/ble_berrymed_pulse_oximeter/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_BLE_BroadcastNet.git
https://pypi.org/project/adafruit-circuitpython-ble-broadcastnet
https://circuitpython.readthedocs.io/projects/ble_broadcastnet/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_BLE_Cycling_Speed_and_Cadence.git
https://pypi.org/project/adafruit-circuitpython-ble-cycling-speed-and-cadence
https://circuitpython.readthedocs.io/projects/ble_cycling_speed_and_cadence/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_BLE_Eddystone.git
https://pypi.org/project/adafruit-circuitpython-ble-eddystone
https://circuitpython.readthedocs.io/projects/ble_eddystone/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_BLE_Heart_Rate.git
https://pypi.org/project/adafruit-circuitpython-ble-heart-rate
https://circuitpython.readthedocs.io/projects/ble_heart_rate/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_BLE_LYWSD03MMC.git
https://pypi.org/project/adafruit-circuitpython-ble-lywsd03mmc
https://circuitpython.readthedocs.io/projects/ble_lywsd03mmc/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_BLE_MIDI.git
https://pypi.org/project/adafruit-circuitpython-ble-midi
https://circuitpython.readthedocs.io/projects/ble_midi/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_BLE_Magic_Light.git
https://pypi.org/project/adafruit-circuitpython-ble-magic-light
https://circuitpython.readthedocs.io/projects/ble_magic_light/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_BLE_Radio.git
https://pypi.org/project/adafruit-circuitpython-ble-radio
https://circuitpython.readthedocs.io/projects/ble_radio/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_BLE_iBBQ.git
https://pypi.org/project/adafruit-circuitpython-ble-ibbq
https://circuitpython.readthedocs.io/projects/ble_ibbq/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_BLE.git
https://pypi.org/project/adafruit-circuitpython-ble
https://circuitpython.readthedocs.io/projects/ble/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_BitbangIO.git
https://pypi.org/project/adafruit-circuitpython-bitbangio
https://circuitpython.readthedocs.io/projects/bitbangio/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_Bitmap_Font.git
https://pypi.org/project/adafruit-circuitpython-bitmap-font
https://circuitpython.readthedocs.io/projects/bitmap-font/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_BitmapSaver.git
https://pypi.org/project/adafruit-circuitpython-bitmapsaver
https://circuitpython.readthedocs.io/projects/bitmapsaver/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_BluefruitConnect.git
https://pypi.org/project/adafruit-circuitpython-bluefruitconnect
https://circuitpython.readthedocs.io/projects/bluefruitconnect/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_BoardTest.git
https://circuitpython.readthedocs.io/projects/boardtest/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_BusDevice.git
https://pypi.org/project/adafruit-circuitpython-busdevice
https://circuitpython.readthedocs.io/projects/busdevice/en/latest/

Adafruit CircuitPython Colorsys (Docs)

Adafruit CircuitPython CursorControl (PyPi) (Docs)

Adafruit CircuitPython Dash Display (Docs)

Adafruit CircuitPython Debouncer (PyPi) (Docs)

Adafruit CircuitPython Debug I2C (PyPi) (Docs)

Adafruit CircuitPython Display Button (PyPi) (Docs)

Adafruit CircuitPython Display Notification (PyPi) (Docs)

Adafruit CircuitPython Display Shapes (PyPi) (Docs)

Adafruit CircuitPython Display Text (PyPi) (Docs)

Adafruit CircuitPython DisplayIO Layout (PyPi) (Docs)

Adafruit CircuitPython Ducky (PyPi) (Docs)

Adafruit CircuitPython FakeRequests (PyPi) (Docs)

Adafruit CircuitPython FancyLED (PyPi) (Docs)

Adafruit CircuitPython FeatherWing (PyPi) (Docs)

Adafruit CircuitPython FunHouse (Docs)

Adafruit CircuitPython GC IOT Core (PyPi) (Docs)

Adafruit CircuitPython Gizmo (PyPi) (Docs)

Adafruit CircuitPython HID (PyPi) (Docs)

Adafruit CircuitPython Hue (PyPi) (Docs)

Adafruit CircuitPython ImageLoad (PyPi) (Docs)

Adafruit CircuitPython IterTools (Docs)

Adafruit CircuitPython JWT (PyPi) (Docs)

Adafruit CircuitPython LED Animation (PyPi) (Docs)

Adafruit CircuitPython LIFX (PyPi) (Docs)

Adafruit CircuitPython Logging (Docs)

Adafruit CircuitPython MIDI (PyPi) (Docs)

Adafruit CircuitPython MacroPad (Docs)

Adafruit CircuitPython MagTag (Docs)

Adafruit CircuitPython MatrixPortal (Docs)

Adafruit CircuitPython MiniMQTT (PyPi) (Docs)

Adafruit CircuitPython MotorKit (PyPi) (Docs)

Adafruit CircuitPython Motor (PyPi) (Docs)

Adafruit CircuitPython NTP (PyPi) (Docs)

Adafruit CircuitPython NeoKey (PyPi) (Docs)

Adafruit CircuitPython OAuth2 (PyPi) (Docs)

Adafruit CircuitPython OneWire (PyPi) (Docs)

Adafruit CircuitPython PIOASM (PyPi) (Docs)

Adafruit CircuitPython PYOA (Docs)

Adafruit CircuitPython Pixel Framebuf (PyPi) (Docs)

Adafruit CircuitPython Pixelbuf (PyPi) (Docs)

Adafruit CircuitPython PortalBase (PyPi) (Docs)

Adafruit CircuitPython ProgressBar (PyPi) (Docs)

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 114 of 115

https://github.com/adafruit/Adafruit_CircuitPython_Colorsys.git
https://circuitpython.readthedocs.io/projects/colorsys/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_CursorControl.git
https://pypi.org/project/adafruit-circuitpython-cursorcontrol
https://circuitpython.readthedocs.io/projects/cursorcontrol/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_Dash_Display
https://circuitpython.readthedocs.io/projects/dash_display/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_Debouncer.git
https://pypi.org/project/adafruit-circuitpython-debouncer
https://circuitpython.readthedocs.io/projects/debouncer/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_Debug_I2C.git
https://pypi.org/project/adafruit-circuitpython-debug-i2c
https://circuitpython.readthedocs.io/projects/debug_i2c/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_Display_Button.git
https://pypi.org/project/adafruit-circuitpython-display-button
https://circuitpython.readthedocs.io/projects/display-button/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_Display_Notification.git
https://pypi.org/project/adafruit-circuitpython-display-notification
https://circuitpython.readthedocs.io/projects/display_notification/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_Display_Shapes.git
https://pypi.org/project/adafruit-circuitpython-display-shapes
https://circuitpython.readthedocs.io/projects/display-shapes/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_Display_Text.git
https://pypi.org/project/adafruit-circuitpython-display-text
https://circuitpython.readthedocs.io/projects/display_text/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_DisplayIO_Layout.git
https://pypi.org/project/adafruit-circuitpython-displayio-layout
https://circuitpython.readthedocs.io/projects/displayio-layout/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_Ducky.git
https://pypi.org/project/adafruit-circuitpython-ducky
https://circuitpython.readthedocs.io/projects/ducky/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_FakeRequests.git
https://pypi.org/project/adafruit-circuitpython-fakerequests
https://circuitpython.readthedocs.io/projects/fakerequests/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_FancyLED.git
https://pypi.org/project/adafruit-circuitpython-fancyled
https://circuitpython.readthedocs.io/projects/fancyled/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_FeatherWing.git
https://pypi.org/project/adafruit-circuitpython-featherwing
https://circuitpython.readthedocs.io/projects/featherwing/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_FunHouse.git
https://circuitpython.readthedocs.io/projects/funhouse/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_GC_IOT_Core.git
https://pypi.org/project/adafruit-circuitpython-gc-iot-core
https://circuitpython.readthedocs.io/projects/gc_iot_core/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_Gizmo.git
https://pypi.org/project/adafruit-circuitpython-gizmo
https://circuitpython.readthedocs.io/projects/gizmo/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_HID.git
https://pypi.org/project/adafruit-circuitpython-hid
https://circuitpython.readthedocs.io/projects/hid/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_Hue.git
https://pypi.org/project/adafruit-circuitpython-hue
https://circuitpython.readthedocs.io/projects/hue/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_ImageLoad.git
https://pypi.org/project/adafruit-circuitpython-imageload
https://circuitpython.readthedocs.io/projects/imageload/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_IterTools.git
https://circuitpython.readthedocs.io/projects/itertools/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_JWT.git
https://pypi.org/project/adafruit-circuitpython-jwt
https://circuitpython.readthedocs.io/projects/jwt/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_LED_Animation.git
https://pypi.org/project/adafruit-circuitpython-led-animation
https://circuitpython.readthedocs.io/projects/led-animation/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_LIFX.git
https://pypi.org/project/adafruit-circuitpython-lifx
https://circuitpython.readthedocs.io/projects/lifx/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_Logging.git
https://circuitpython.readthedocs.io/projects/logging/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_MIDI.git
https://pypi.org/project/adafruit-circuitpython-midi
https://circuitpython.readthedocs.io/projects/midi/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_MacroPad.git
https://circuitpython.readthedocs.io/projects/macropad/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_MagTag.git
https://circuitpython.readthedocs.io/projects/magtag/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_MatrixPortal.git
https://circuitpython.readthedocs.io/projects/matrixportal/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_MiniMQTT.git
https://pypi.org/project/adafruit-circuitpython-minimqtt
https://circuitpython.readthedocs.io/projects/minimqtt/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_MotorKit.git
https://pypi.org/project/adafruit-circuitpython-motorkit
https://circuitpython.readthedocs.io/projects/motorkit/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_Motor.git
https://pypi.org/project/adafruit-circuitpython-motor
https://circuitpython.readthedocs.io/projects/motor/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_NTP.git
https://pypi.org/project/adafruit-circuitpython-ntp
https://circuitpython.readthedocs.io/projects/ntp/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_NeoKey.git
https://pypi.org/project/adafruit-circuitpython-neokey
https://circuitpython.readthedocs.io/projects/neokey/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_OAuth2.git
https://pypi.org/project/adafruit-circuitpython-oauth2
https://circuitpython.readthedocs.io/projects/oauth2/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_OneWire.git
https://pypi.org/project/adafruit-circuitpython-onewire
https://circuitpython.readthedocs.io/projects/onewire/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_PIOASM.git
https://pypi.org/project/adafruit-circuitpython-pioasm
https://circuitpython.readthedocs.io/projects/pioasm/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_PYOA.git
https://circuitpython.readthedocs.io/projects/pyoa/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_Pixel_Framebuf.git
https://pypi.org/project/adafruit-circuitpython-pixel-framebuf
https://circuitpython.readthedocs.io/projects/pixel_framebuf/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_Pixelbuf.git
https://pypi.org/project/adafruit-circuitpython-pixelbuf
https://circuitpython.readthedocs.io/projects/pixelbuf/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_PortalBase.git
https://pypi.org/project/adafruit-circuitpython-portalbase
https://circuitpython.readthedocs.io/projects/portalbase/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_ProgressBar.git
https://pypi.org/project/adafruit-circuitpython-progressbar
https://circuitpython.readthedocs.io/projects/progressbar/en/latest/

Adafruit CircuitPython PyBadger (PyPi) (Docs)

Adafruit CircuitPython Pypixelbuf (PyPi) (Docs)

Adafruit CircuitPython RGBLED (PyPi) (Docs)

Adafruit CircuitPython RSA (PyPi) (Docs)

Adafruit CircuitPython RTTTL (PyPi) (Docs)

Adafruit CircuitPython Register (PyPi) (Docs)

Adafruit CircuitPython Requests (PyPi) (Docs)

Adafruit CircuitPython ServoKit (PyPi) (Docs)

Adafruit CircuitPython Simple Text Display (PyPi) (Docs)

Adafruit CircuitPython SimpleIO (PyPi) (Docs)

Adafruit CircuitPython SimpleMath (PyPi) (Docs)

Adafruit CircuitPython Slideshow (PyPi) (Docs)

Adafruit CircuitPython Ticks (PyPi) (Docs)

Adafruit CircuitPython TinyLoRa (PyPi) (Docs)

Adafruit CircuitPython WSGI (PyPi) (Docs)

Adafruit CircuitPython Waveform (PyPi) (Docs)

Adafruit CircuitPython binascii (PyPi) (Docs)

Adafruit CircuitPython datetime (PyPi) (Docs)

Adafruit CircuitPython framebuf (PyPi) (Docs)

Adafruit CircuitPython hashlib (PyPi) (Docs)

Adafruit CircuitPython miniQR (PyPi) (Docs)

Adafruit CircuitPython miniesptool (PyPi) (Docs)

Adafruit CircuitPython turtle (PyPi) (Docs)

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 115 of 115

https://github.com/adafruit/Adafruit_CircuitPython_PyBadger.git
https://pypi.org/project/adafruit-circuitpython-pybadger
https://circuitpython.readthedocs.io/projects/pybadger/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_Pypixelbuf.git
https://pypi.org/project/adafruit-circuitpython-pypixelbuf
https://circuitpython.readthedocs.io/projects/pypixelbuf/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_RGBLED.git
https://pypi.org/project/adafruit-circuitpython-rgbled
https://circuitpython.readthedocs.io/projects/rgbled/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_RSA.git
https://pypi.org/project/adafruit-circuitpython-rsa
https://circuitpython.readthedocs.io/projects/rsa/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_RTTTL.git
https://pypi.org/project/adafruit-circuitpython-rtttl
https://circuitpython.readthedocs.io/projects/rtttl/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_Register.git
https://pypi.org/project/adafruit-circuitpython-register
https://circuitpython.readthedocs.io/projects/register/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_Requests.git
https://pypi.org/project/adafruit-circuitpython-requests
https://circuitpython.readthedocs.io/projects/requests/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_ServoKit.git
https://pypi.org/project/adafruit-circuitpython-servokit
https://circuitpython.readthedocs.io/projects/servokit/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_Simple_Text_Display.git
https://pypi.org/project/adafruit-circuitpython-simple-text-display
https://circuitpython.readthedocs.io/projects/simple-text-display/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_SimpleIO.git
https://pypi.org/project/adafruit-circuitpython-simpleio
https://circuitpython.readthedocs.io/projects/simpleio/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_SimpleMath.git
https://pypi.org/project/adafruit-circuitpython-simplemath
https://circuitpython.readthedocs.io/projects/simplemath/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_Slideshow.git
https://pypi.org/project/adafruit-circuitpython-slideshow
https://circuitpython.readthedocs.io/projects/slideshow/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_Ticks.git
https://pypi.org/project/adafruit-circuitpython-ticks
https://circuitpython.readthedocs.io/projects/ticks/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_TinyLoRa.git
https://pypi.org/project/adafruit-circuitpython-tinylora
https://circuitpython.readthedocs.io/projects/tinylora/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_WSGI.git
https://pypi.org/project/adafruit-circuitpython-wsgi
https://circuitpython.readthedocs.io/projects/wsgi/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_Waveform.git
https://pypi.org/project/adafruit-circuitpython-waveform
https://circuitpython.readthedocs.io/projects/waveform/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_binascii.git
https://pypi.org/project/adafruit-circuitpython-binascii
https://circuitpython.readthedocs.io/projects/binascii/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_datetime.git
https://pypi.org/project/adafruit-circuitpython-datetime
https://circuitpython.readthedocs.io/projects/datetime/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_framebuf.git
https://pypi.org/project/adafruit-circuitpython-framebuf
https://circuitpython.readthedocs.io/projects/framebuf/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_hashlib.git
https://pypi.org/project/adafruit-circuitpython-hashlib
https://circuitpython.readthedocs.io/projects/hashlib/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_miniQR.git
https://pypi.org/project/adafruit-circuitpython-miniqr
https://circuitpython.readthedocs.io/projects/miniqr/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_miniesptool.git
https://pypi.org/project/adafruit-circuitpython-miniesptool
https://circuitpython.readthedocs.io/projects/miniesptool/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_turtle.git
https://pypi.org/project/adafruit-circuitpython-turtle
https://circuitpython.readthedocs.io/projects/turtle/en/latest/

	CircuitPython Essentials
	Table of Contents
	CircuitPython Essentials
	CircuitPython Pins and Modules
	CircuitPython Built-Ins
	CircuitPython Digital In & Out
	CircuitPython Analog In
	CircuitPython Analog Out
	CircuitPython Audio Out
	CircuitPython MP3 Audio
	CircuitPython PWM
	CircuitPython Servo
	CircuitPython Cap Touch
	CircuitPython Internal RGB LED
	CircuitPython NeoPixel
	CircuitPython DotStar
	CircuitPython UART Serial
	CircuitPython I2C
	CircuitPython HID Keyboard and Mouse
	CircuitPython Storage
	CircuitPython CPU Temp
	CircuitPython Expectations
	CircuitPython Resetting
	CircuitPython Libraries and Drivers
	CircuitPython Libraries

	CircuitPython Essentials
	CircuitPython Pins and Modules
	CircuitPython Pins
	import board
	I2C, SPI, and UART
	What Are All the Available Names?
	Microcontroller Pin Names

	CircuitPython Built-In Modules
	CircuitPython Built-Ins
	Thing That Are Built In and Work
	Flow Control
	Math
	Tuples, Lists, Arrays, and Dictionaries
	Classes, Objects and Functions
	Lambdas
	Random Numbers

	CircuitPython Digital In & Out
	Find the pins!
	Read the Docs

	CircuitPython Analog In
	Creating the analog input
	get_voltage Helper
	Main Loop
	Changing It Up
	Wire it up

	Reading Analog Pin Values
	CircuitPython Analog Out
	Creating an analog output
	Setting the analog output
	Main Loop
	Find the pin

	CircuitPython Audio Out
	Play a Tone
	Play a Wave File
	Wire It Up

	CircuitPython MP3 Audio
	CircuitPython PWM
	PWM with Fixed Frequency
	Create a PWM Output
	Main Loop
	PWM Output with Variable Frequency
	Wire it up
	Where's My PWM?

	CircuitPython Servo
	Servo Wiring
	Standard Servo Code
	Continuous Servo Code

	CircuitPython Cap Touch
	Create the Touch Input
	Main Loop
	Find the Pin(s)

	CircuitPython Internal RGB LED
	Create the LED
	Brightness
	Main Loop
	Making Rainbows (Because Who Doesn't Love 'Em!)
	Circuit Playground Express Rainbow

	CircuitPython NeoPixel
	Wiring It Up
	The Code
	Create the LED
	NeoPixel Helpers
	Main Loop
	NeoPixel RGBW
	Read the Docs

	CircuitPython DotStar
	Wire It Up
	The Code
	Create the LED
	DotStar Helpers
	Main Loop
	Is it SPI?
	Read the Docs

	CircuitPython UART Serial
	The Code
	Wire It Up
	Where's my UART?
	Trinket M0: Create UART before I2C

	CircuitPython I2C
	Wire It Up
	Find Your Sensor
	I2C Sensor Data
	Where's my I2C?

	CircuitPython HID Keyboard and Mouse
	CircuitPython Keyboard Emulator
	Create the Objects and Variables
	The Main Loop
	Non-US Keyboard Layouts

	CircuitPython Mouse Emulator
	Create the Objects and Variables
	CircuitPython HID Mouse Helpers
	Main Loop

	CircuitPython Storage
	Logging the Temperature

	CircuitPython CPU Temp
	CircuitPython Expectations
	Always Run the Latest Version of CircuitPython and Libraries
	I have to continue using CircuitPython 3.x or 2.x, where can I find compatible libraries?
	Switching Between CircuitPython and Arduino
	The Difference Between Express And Non-Express Boards
	Non-Express Boards: Gemma, Trinket, and QT Py
	Small Disk Space
	No Audio or NVM

	Differences Between CircuitPython and MicroPython
	Differences Between CircuitPython and Python
	Python Libraries
	Integers in CircuitPython
	Floating Point Numbers and Digits of Precision for Floats in CircuitPython
	Differences between MicroPython and Python

	CircuitPython Resetting
	Soft Reset
	Hard Reset
	Reset Into Specific Mode
	More Info

	CircuitPython Libraries and Drivers
	CircuitPython Libraries
	Adafruit CircuitPython Libraries
	Drivers:
	Helpers:

