

Maxim > Design Support > Technical Documents > Application Notes > Automotive > APP 1050

Maxim > Design Support > Technical Documents > Application Notes > Microprocessor Supervisor Circuits > APP 1050

Keywords: reset circuit, power-up, por, power on reset, reset timeout, sequencer, active-high, push-pull, SOT23, protection circuit

**APPLICATION NOTE 1050** 

## Reset Circuit Ensures Valid Supply Voltage

Apr 11, 2002

Abstract: This article focuses on using an external MOSFET switch to ensure a valid system voltage is present before applying it to the load. This simple circuit uses a reset circuit and the MOSFET to provide a protection circuit during power-up.

It is often necessary to prevent a power supply's voltage from being applied to a load until the voltage has reached a certain minimum value. The circuit of **Figure 1**, consisting of two compact SOT23 packages, protects the load by blocking the supply voltage (nominally 5V) when it is below a pre-set threshold. IC1's threshold is 4.63V; four other versions of this IC provide thresholds of 4.38V, 3.08V, 2.93V, and 2.63V.

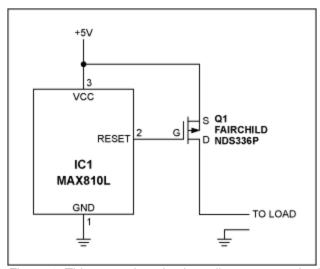



Figure 1. This protection circuit applies power to the load only when V<sub>CC</sub> is above a pre-set threshold voltage.

IC1's active-high Reset output holds the p-channel MOSFET off by remaining high during power-up. It continues to remain high through the end of the reset timeout period (140ms minimum), which is initiated by IC1 as  $V_{CC}$  passes through the 4.63V threshold. If  $V_{CC}$  remains above 4.63V after the timeout has expired, Reset goes low, turns on Q1, and applies  $V_{CC}$  to the load. Q1's on-resistance (0.2 $\Omega$  for  $V_{GS}$  = 4.5V) can deliver 1A of supply current with a drop of only 200mV.

If  $V_{CC}$  falters and drops below the threshold during the timeout, or if  $V_{CC}$  dips below threshold during normal operation, Q1 turns off and removes  $V_{CC}$  from the load. During power-down as well, Reset goes high and turns Q1 off as soon as  $V_{CC}$  drops below the threshold. IC1 maintains this gate drive for  $V_{CC}$  down to 1V; below that level, the load remains safe because  $V_{GS}$  is too low to turn Q1 back on.

This circuit can be implemented with any microprocessor-reset device offering an active-high, push-pull reset output. As alternatives offering other threshold levels and feature combinations, consider the MAX812, MAX824, MAX6327, and MAX6332.

| Related Parts |                                                                                   |              |
|---------------|-----------------------------------------------------------------------------------|--------------|
| MAX6327       | 3-Pin, Ultra-Low-Power SC70/SOT μP Reset Circuits                                 | Free Samples |
| MAX6332       | 3-Pin, Ultra-Low-Voltage, Low-Power μP Reset Circuits                             | Free Samples |
| MAX812        | 4-Pin μP Voltage Monitors with Manual Reset Input                                 | Free Samples |
| MAX824        | 5-Pin Microprocessor Supervisory Circuits with Watchdog<br>Timer and Manual Reset | Free Samples |

## **More Information**

For Technical Support: http://www.maximintegrated.com/support

For Samples: http://www.maximintegrated.com/samples

Other Questions and Comments: http://www.maximintegrated.com/contact

Application Note 1050: http://www.maximintegrated.com/an1050

APPLICATION NOTE 1050, AN1050, AN 1050, APP1050, Appnote 1050, Appnote 1050

Copyright © by Maxim Integrated Products

Additional Legal Notices: http://www.maximintegrated.com/legal